Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Struct Mol Biol ; 12(8): 654-62, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16025129

ABSTRACT

Expansion of (CTG)*(CAG) repeats, the cause of 14 or more diseases, is presumed to arise through escaped repair of slipped DNAs. We report the fidelity of slipped-DNA repair using human cell extracts and DNAs with slip-outs of (CAG)(20) or (CTG)(20). Three outcomes occurred: correct repair, escaped repair and error-prone repair. The choice of repair path depended on nick location and slip-out composition (CAG or CTG). A new form of error-prone repair was detected whereby excess repeats were incompletely excised, constituting a previously unknown path to generate expansions but not deletions. Neuron-like cell extracts yielded each of the three repair outcomes, supporting a role for these processes in (CTG)*(CAG) instability in patient post-mitotic brain cells. Mismatch repair (MMR) and nucleotide excision repair (NER) proteins hMSH2, hMSH3, hMLH1, XPF, XPG or polymerase beta were not required-indicating that their role in instability may precede that of slip-out processing. Differential processing of slipped repeats may explain the differences in mutation patterns between various disease loci or tissues.


Subject(s)
Cell Extracts/genetics , DNA Repair Enzymes/metabolism , DNA Repair/genetics , Models, Genetic , Trinucleotide Repeat Expansion/genetics , DNA-Directed DNA Polymerase/metabolism , Electrophoresis , Genetic Diseases, Inborn/genetics , HeLa Cells , Humans , Mutation/genetics , Neurons/cytology , Statistics, Nonparametric
3.
Am J Hum Genet ; 76(2): 302-11, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15625623

ABSTRACT

Instability of the fragile X CGG repeat involves both maternally derived expansions and deletions in the gametes of full-mutation males. It has also been suggested that the absence of aberrant CpG methylation may enhance repeat deletions through an unknown process. The effect of CGG tract length, DNA replication direction, location of replication initiation, and CpG methylation upon CGG stability were investigated using an SV40 primate replication system. Replication-dependant deletions with 53 CGG repeats were observed when replication was initiated proximal to the repeat, with CGG as the lagging-strand template. When we initiated replication further from the repeat, while maintaining CGG as the lagging-strand template or using CCG as the lagging-strand template, significant instability was not observed. CpG methylation of the unstable template stabilized the repeat, decreasing both the frequency and the magnitude of deletion events. Furthermore, CpG methylation slowed the efficiency of replication for all templates. Interestingly, replication forks displayed no evidence of a block at the CGG repeat tract, regardless of replication direction or CpG methylation status. Templates with 20 CGG repeats were stable under all circumstances. These results reveal that CGG deletions occur during replication and are sensitive to replication-fork dynamics, tract length, and CpG methylation.


Subject(s)
CpG Islands/genetics , DNA Methylation , Fragile X Syndrome/genetics , Gene Deletion , Cell Culture Techniques , Chromosomal Instability , DNA Replication , Humans , Trinucleotide Repeats
SELECTION OF CITATIONS
SEARCH DETAIL
...