Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
3.
Article in English | MEDLINE | ID: mdl-26651686

ABSTRACT

A granular front emerges whenever the free-surface flow of a concentrated suspension spontaneously alters its internal structure, exhibiting a higher concentration of particles close to its front. This is a common and yet unexplained phenomenon, which is usually believed to be the result of fluid convection in combination with particle size segregation. However, suspensions composed of uniformly sized particles also develop a granular front. Within a large rotating drum, a stationary recirculating avalanche is generated. The flowing material is a mixture of a viscoplastic fluid obtained from a kaolin-water dispersion with spherical ceramic particles denser than the fluid. The goal is to mimic the composition of many common granular-fluid materials, such as fresh concrete or debris flow. In these materials, granular and fluid phases have the natural tendency to separate due to particle settling. However, through the shearing caused by the rotation of the drum, a reorganization of the phases is induced, leading to the formation of a granular front. By tuning the particle concentration and the drum velocity, it is possible to control this phenomenon. The setting is reproduced in a numerical environment, where the fluid is solved by a lattice-Boltzmann method, and the particles are explicitly represented using the discrete element method. The simulations confirm the findings of the experiments, and provide insight into the internal mechanisms. Comparing the time scale of particle settling with the one of particle recirculation, a nondimensional number is defined, and is found to be effective in predicting the formation of a granular front.

4.
Curr Stem Cell Res Ther ; 6(1): 69-72, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20955153

ABSTRACT

The lack of therapies fostering remyelination and regeneration of the neural network deranged by the autoimmune attack occurring in multiple sclerosis (MS), is raising great expectations about stem cells therapies for tissue repair. Mesenchymal stem cells (MSCs) have been proposed as a possible treatment for MS due to the reported capacity of transdifferentiation into neural cells and their ability at modulating immune responses. However, recent studies have demonstrated that many other functional properties are likely to play a role in the therapeutic plasticity of MSCs, including anti-apoptotic, trophic and anti-oxidant effects. These features are mostly based on the paracrine release of soluble molecules, often dictated by local environmental cues. Based on the modest evidence of long-term engraftment and the striking clinical effects that are observed immediately after MSCs administration in the experimental model of MS, we do not favor a major role for transdifferentiation as an important mechanism involved in the therapeutic effect of MSCs.


Subject(s)
Cell Transdifferentiation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Multiple Sclerosis/therapy , Animals , Humans , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...