Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Biol Med (Maywood) ; 235(6): 710-7, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20511675

ABSTRACT

Epidemiological evidence suggests that a diet abundant in fruits and vegetables may protect against colon cancer. Bioactive compounds, including flavonoids and limonoids, have been shown to possess antiproliferative and antitumorigenic effects in various cancer models. This experiment investigated the effects of four citrus flavonoids and one limonoid mixture at the promotion stage of chemically induced colon cancer in rats. Male Sprague-Dawley rats (n = 10 rats/group) were randomly allocated to one of six diets formulated to contain 0.1% apigenin, 0.02% naringenin, 0.1% hesperidin, 0.01% nobiletin, 0.035% limonin glucoside/obacunone glucoside mixture or a control diet (0% flavonoid/limonoid). Rats received experimental diets for 10 weeks and were injected with azoxymethane (15 mg/kg) at weeks 3 and 4. Excised colons were evaluated for aberrant crypt foci (ACF) formation, colonocyte proliferation (proliferating cell nuclear antigen assay), apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling assay) and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (immunoblotting). When compared with the control diet, apigenin lowered the number of high multiplicity ACF (HMACF >4 aberrant crypts/focus) by 57% (P < 0.05), while naringenin lowered both the number of HMACF by 51% (P < 0.05) and the proliferative index by 32% (P < 0.05). Both apigenin and naringenin increased apoptosis of luminal surface colonocytes (78% and 97%, respectively; P < 0.05) when compared with the control diet. Hesperidin, nobiletin and the limonin glucoside/obacunone glucoside mixture did not affect these variables. The colonic mucosal protein levels of iNOS or COX-2 were not different among the six diet groups. The ability of dietary apigenin and naringenin to reduce HMACF, lower proliferation (naringenin only) and increase apoptosis may contribute toward colon cancer prevention. However, these effects were not due to mitigation of iNOS and COX-2 protein levels at the ACF stage of colon cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Apigenin/administration & dosage , Azoxymethane/toxicity , Colonic Neoplasms/chemically induced , Colonic Neoplasms/prevention & control , Flavanones/administration & dosage , Animals , Antineoplastic Agents/pharmacology , Apigenin/pharmacology , Apoptosis , Blotting, Western , Cell Proliferation , Citrus/chemistry , Colon/pathology , Cyclooxygenase 2/biosynthesis , Diet/methods , Flavanones/pharmacology , Histocytochemistry , Male , Nitric Oxide Synthase Type II/biosynthesis , Rats , Rats, Sprague-Dawley
2.
Carcinogenesis ; 27(6): 1257-65, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16387741

ABSTRACT

This study evaluated the hypothesis that untreated and irradiated grapefruit as well as the isolated citrus compounds naringin and limonin would protect against azoxymethane (AOM)-induced aberrant crypt foci (ACF) by suppressing proliferation and elevating apoptosis through anti-inflammatory activities. Male Sprague-Dawley rats (n = 100) were provided one of five diets: control (without added grapefruit components), untreated or irradiated (300 Gy, 137Cs) grapefruit pulp powder (13.7 g/kg), naringin (200 mg/kg) or limonin (200 mg/kg). Rats were injected with saline or AOM (15 mg/kg) during the third and fourth week and colons were resected (6 weeks post second injection) for evaluation of ACF, proliferation, apoptosis, and cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) protein levels. Experimental diets had no effect on the variables measured in saline-injected rats. However, in AOM-injected rats, the experimental diets suppressed (P < or = 0.02) aberrant crypt and high multiplicity ACF (HMACF; P < or = 0.01) formation and the proliferative index (P < or = 0.02) compared with the control diet. Only untreated grapefruit and limonin suppressed (P < or = 0.04) HMACF/cm and expansion (P < or = 0.008) of the proliferative zone that occurred in the AOM-injected rats consuming the control diet. All diets elevated (P < or = 0.05) the apoptotic index in AOM-injected rats, compared with the control diet; however, the greatest enhancement was seen with untreated grapefruit and limonin. Untreated grapefruit and limonin diets suppressed elevation of both iNOS (P < or = 0.003) and COX-2 (P < or = 0.032) levels observed in AOM-injected rats consuming the control diet. Although irradiated grapefruit and naringin suppressed iNOS levels in AOM-injected rats, no effect was observed with respect to COX-2 levels. Thus, lower levels of iNOS and COX-2 are associated with suppression of proliferation and upregulation of apoptosis, which may have contributed to a decrease in the number of HMACF in rats provided with untreated grapefruit and limonin. These results suggest that consumption of grapefruit or limonin may help to suppress colon cancer development.


Subject(s)
Colonic Neoplasms/prevention & control , Animals , Carcinogens , Cell Proliferation , Citrus paradisi , Colonic Neoplasms/drug therapy , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Flavanones/pharmacology , Limonins/metabolism , Male , Nitric Oxide Synthase Type II/metabolism , Plant Extracts/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...