Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 1025477, 2022.
Article in English | MEDLINE | ID: mdl-36438083

ABSTRACT

Solanum lycopersicum L. cv. 'Microtom' (MicroTom) is a model organism with a relatively rapid life cycle, and wide library of genetic mutants available to study different aspects of plant development. Despite its small stature, conventional MicroTom research often requires expensive growth cabinets and/or expansive greenhouse space, limiting the number of experimental and control replications needed for experiments, and can render plants susceptible to pests and disease. Thus, alternative experimental approaches must be devised to reduce the footprint of experimental units and limit the occurrence problematic confounding variables. Here, tissue culture is presented as a powerful option for MicroTom research that can quell the complications associated with conventional MicroTom research methods. A previously established, non-invasive, analytical tissue culture system is used to compare in vitro and conventionally produced MicroTom by assessing photosynthesis, respiration, diurnal carbon gain, and fruit pigments. To our knowledge, this is the first publication that measures in vitro MicroTom fruit pigments and compares diurnal photosynthetic/respiration responses to abiotic factors between in vitro and ex vitro MicroTom. Comparable trends would validate tissue culture as a new benchmark method in MicroTom research, as it is like Arabidopsis, allowing replicable, statistically valid, high throughput genotyping and selective phenotyping experiments. Combining the model plant MicroTom with advanced tissue culture methods makes it possible to study bonsai-style MicroTom responses to light, temperature, and atmospheric stimuli in the absence of confounding abiotic stress factors that would otherwise be unachievable using conventional methods.

2.
Biology (Basel) ; 11(5)2022 May 10.
Article in English | MEDLINE | ID: mdl-35625457

ABSTRACT

Supplemental sugar additives for plant tissue culture cause mixotrophic growth, complicating carbohydrate metabolism and photosynthetic relationships. A unique platform to test and model the photosynthetic proficiency and biomass accumulation of micropropagated plantlets was introduced and applied to Cannabis sativa L. (cannabis), an emerging crop with high economic interest. Conventional in vitro systems can hinder the photoautotrophic ability of plantlets due to low light intensity, low vapor pressure deficit, and limited CO2 availability. Though exogenous sucrose is routinely added to improve in vitro growth despite reduced photosynthetic capacity, reliance on sugar as a carbon source can also trigger negative responses that are species-dependent. By increasing photosynthetic activity in vitro, these negative consequences can likely be mitigated, facilitating the production of superior specimens with enhanced survivability. The presented methods use an open-flow/force-ventilated gas exchange system and infrared gas analysis to measure the impact of [CO2], light, and additional factors on in vitro photosynthesis. This system can be used to answer previously overlooked questions regarding the nature of in vitro plant physiology to enhance plant tissue culture and the overall understanding of in vitro processes, facilitating new research methods and idealized protocols for commercial tissue culture.

3.
PLoS One ; 13(10): e0205861, 2018.
Article in English | MEDLINE | ID: mdl-30335803

ABSTRACT

In controlled environment plant production facilities, elevating either light or CO2 levels generally has led to increased biomass and yield due to enhanced canopy photosynthesis. Today, advancements in light-emitting diodes (LEDs) have made this technology a viable option for both supplementary lighting in greenhouses and a sole lighting source in controlled environment chambers. Our study used tomato plants grown under both ambient CO2 (AC) and elevated CO2 (EC) conditions then exposed them to various CO2 and lighting treatments during both whole plant and leaf level measurements. Plants grown under EC reached the first flower developmental stage 8 days sooner and were approximately 15cm taller than those grown under AC. However, under AC plants had more leaf area while their dry weights were similar. Of note, under EC chlorophyll a and b were lower, as were carotenoids per unit leaf area. Whole plant analyses, under all CO2 challenges, showed that plants exposed to high-pressure sodium (HPS), red-blue LED, and red-white LED had similar photosynthesis, respiration, and daily carbon gain. Under different light qualities, day-time transpiration rates were similar among CO2 conditions. Day-time water-use efficiency (WUE) was higher in plants grown and exposed to EC. Similarly, WUE of plants grown under AC but exposed to short-term elevated CO2 conditions was higher than those grown and tested under AC during all light treatments. Under all CO2 conditions, plants exposed to red-white and red-blue LEDs had lower WUE than those exposed to HPS lighting. Assessing alterations due to CO2 and light quality on a whole plant basis, not merely on an individual leaf basis, furthers our understanding of the interactions between these two parameters during controlled environment production. Principle component analyses of both whole plant and leaf data indicates that increasing CO2 supply has a more dramatic effect on photosynthesis and WUE than on transpiration.


Subject(s)
Carbon Dioxide/pharmacology , Lighting/methods , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Transpiration/drug effects , Solanum lycopersicum/drug effects , Carbon Dioxide/metabolism , Carotenoids/biosynthesis , Chlorophyll A/biosynthesis , Environment, Controlled , Light , Solanum lycopersicum/physiology , Solanum lycopersicum/radiation effects , Photosynthesis/physiology , Photosynthesis/radiation effects , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Transpiration/physiology , Plant Transpiration/radiation effects , Principal Component Analysis , Water/metabolism
4.
Front Plant Sci ; 9: 756, 2018.
Article in English | MEDLINE | ID: mdl-29915612

ABSTRACT

Translocation of assimilates is a fundamental process involving carbon and water balance affecting source/sink relationships. Diurnal patterns of CO2 exchange, translocation (carbon export), and transpiration of an intact tomato source leaf were determined during 14CO2 steady-state labeling under different wavelengths at three pre-set photosynthetic rates. Daily patterns showed that photosynthesis and export were supported by all wavelengths of light tested including orange and green. Export in the light, under all wavelengths was always higher than that at night. Export in the light varied from 65-83% of the total daily carbon fixed, depending on light intensity. Photosynthesis and export were highly correlated under all wavelengths (r = 0.90-0.96). Export as a percentage of photosynthesis (relative export) decreased as photosynthesis increased by increasing light intensity under all wavelengths. These data indicate an upper limit for export under all spectral conditions. Interestingly, only at the medium photosynthetic rate, relative export under the blue and the orange light-emitting diodes (LEDs) were higher than under white and red-white LEDs. Stomatal conductance, transpiration rates, and water-use-efficiency showed similar daily patterns under all wavelengths. Illuminating tomato leaves with different spectral quality resulted in similar carbon export rates, but stomatal conductance and transpiration rates varied due to wavelength specific control of stomatal function. Thus, we caution that the link between transpiration and C-export may be more complex than previously thought. In summary, these data indicate that orange and green LEDs, not simply the traditionally used red and blue LEDs, should be considered and tested when designing lighting systems for optimizing source leaf strength during plant production in controlled environment systems. In addition, knowledge related to the interplay between water and C-movement within a plant and how they are affected by environmental stimuli, is needed to develop a better understanding of source/sink relationships.

5.
Front Plant Sci ; 8: 1076, 2017.
Article in English | MEDLINE | ID: mdl-28676816

ABSTRACT

Advancements in light-emitting diode (LED) technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato (Solanum lycopersicum) leaves under short-term illumination and lisianthus (Eustoma grandiflorum) and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H2O and CO2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO2 concentration and a subsequent decrease in water-use-efficiency (WUE) when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB) and red-white (RW) LEDs when compared to a high pressure sodium (HPS) light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production.

6.
Physiol Plant ; 117(4): 521-531, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12675742

ABSTRACT

Diurnal patterns of whole-plant and leaf gas exchange and 14C-export of winter wheat acclimated at 20 and 5 degrees C were determined. The 5 degrees C-acclimated plants had lower relative growth rates, smaller biomass and leaf area, but larger specific leaf weight than 20 degrees C plants. Photosynthetic rates in 20 degrees C and 5 degrees C-acclimated leaves were similar; however, daytime export from 5 degrees C-acclimated leaves was 45% lower. Photosynthesis and export remained steady in 20 degrees C and 5 degrees C-acclimated leaves during the daytime. By comparison, photosynthesis in 5 degrees C-stressed leaves (20 degrees C-acclimated plants exposed to 5 degrees C 12 h before and during measurements) declined from 70 to 50% of the 20 degrees C-acclimated leaves during the daytime, while export remained constant at 35% of the 20 degrees C-acclimated and 60% of the 5 degrees C-acclimated leaves. At high light and CO2, photosynthesis and export increased in both 20 degrees C and 5 degrees C-acclimated leaves, but rates in 5 degrees C-stressed leaves remained unchanged. At all conditions daytime export was greater than nighttime export. Taken together, during cold acclimation photosynthesis was upregulated, whereas export was only partially increased. We suggest that this reflects a requirement of cold-acclimated plants to both sustain an increased leaf metabolic demand while concomitantly supporting translocation of photoassimilates to overwintering sinks.

SELECTION OF CITATIONS
SEARCH DETAIL
...