Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 25(6): 1448-57, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16764461

ABSTRACT

Air samples were collected above agricultural fields in the Fraser Valley and orchards in the Okanagan Valley, British Columbia, Canada, to investigate volatilization of organochlorine pesticides used in the past. Concentrations of pesticides in air were elevated over soils that contained higher residues. Soil/air fugacity ratios at sites with the higher soil residues were calculated relative to air sampled at 40 cm height and background air. The fugacity ratios in the first case indicated net volatilization or soil-air equilibrium for most compounds and occasional net deposition for p,p'-dichlorodiphenyldichloroethene (p,p'-DDE), whereas those in the second case showed a strong potential for net volatilization of all compounds. The enantiomer fraction (EF) of chiral compounds alpha-hexachlorocyclohexane (alpha-HCH), trans-chlordane, cis-chlordane, and o,p'-DDT were determined in overlying air samples and soils. Enantiomer fractions in air corresponded to those in soils at fields in which soil concentrations were high but were decoupled from soil signatures at fields with low soil residues. Mean EFs in air sampled over soils were significantly (p < 0.001) nonracemic for alpha-HCH and the chlordanes and agreed with published EFs in regional ambient air. The mean EF of o,p'-DDT for all air samples did not show a significant deviation from racemic EFs (p > 0.2), but EFs of individual samples reflected the ambivalent nature of o,p'-DDT degradation, sometimes preferring the (+) enantiomer and other times the (-) enantiomer. The study indicates that soils are continuing to emit "legacy" pesticides into the regional atmosphere.


Subject(s)
Air Pollutants/analysis , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Soil Pollutants/analysis , British Columbia , Chromatography, Gas
2.
Environ Pollut ; 128(1-2): 49-57, 2004.
Article in English | MEDLINE | ID: mdl-14667719

ABSTRACT

Soil samples were collected from 30 farms in Alabama, Louisiana and Texas during 1999-2000 to determine residues of organochlorine pesticides (OCPs). One or more of the DDT compounds (p,p'-DDT, o,p'-DDT, p,p'-DDD, p,p'-DDE, o,p'-DDE) was above the quantitation limit (0.1 ng g(-1) dry weight) in every soil, and toxaphene was above the quantitation limit (3 ng g(-1)) in 26 soils. Chlordanes, dieldrin and hexachlorocyclohexane (HCH) isomers occurred less frequently (quantitation limits 0.1 ng g(-1) for dieldrin and 0.05 ng g(-1) for chlordanes and HCHs). OCPs were measured in air at 40 cm above the soil at selected farms to investigate soil-air partitioning. Concentrations of OCPs in air were positively and significantly (P<0.001-0.004) correlated to soil concentrations for toxaphene, p,p'-DDT, o,p'-DDT, p,p'-DDE, dieldrin, and trans-nonachlor. The regression was weaker (P=0.022) for cis-chlordane and not significant for trans-chlordane (P=0.43) nor gamma-HCH (P=0.80). Approach to soil-air equilibrium was assessed by calculating fugacities in the soil and air (f(s) and f(a)) for samples with quantifiable residues in both compartments. The fugacity fraction f(s)=0.5 at equilibrium and is <0.5 or >0.5 for net deposition and net volatilisation, respectively. Fugacity fractions varied greatly for different soil-air pairs, reflecting generally disequilibrium conditions. Mean fugacity fractions indicated near-equilibrium for some OCPs (p,p'-DDE, chlordanes, trans-nonachlor and dieldrin) and net volatilisation for others (p,p'-DDT, o,p'-DDT, toxaphene, gamma-HCH). Chiral analysis showed that enantioselective degradation of (+) or (-) o,p'-DDT in soil was accompanied by enrichment or depletion of the corresponding enantiomers in the overlying air, although there appeared to be some dilution by racemic o,p'-DDT from regional air transport.


Subject(s)
Environmental Monitoring/methods , Environmental Pollution/analysis , Hydrocarbons, Chlorinated , Insecticides/analysis , Agriculture , Air Pollutants/analysis , Alabama , Louisiana , Pesticide Residues/analysis , Soil Pollutants/analysis , Texas
3.
ScientificWorldJournal ; 2: 357-73, 2002 Feb 08.
Article in English | MEDLINE | ID: mdl-12806022

ABSTRACT

The enantiomers of chiral pesticides are often metabolised at different rates in soil and water, leading to nonracemic residues. This paper reviews enantioselective metabolism of organochlorine pesticides (OCPs) in soil and water, and the use of enantiomers to follow transport and fate processes. Residues of chiral OCPs and their metabolites are frequently nonracemic in soil, although exceptions occur in which the OCPs are racemic. In soils where enantioselective degradation and/or metabolite formation has taken place, some OCPs usually show the same degradation preference--e.g., depletion of (+)trans-chlordane (TC) and (-)cis-chlordane (CC), and enrichment of the metabolite (+)heptachlor exo-epoxide (HEPX). The selectivity is ambivalent for other chemicals; preferential loss of either (+) or (-)o,p-DDT and enrichment of either (+) or (-)oxychlordane (OXY) occurs in different soils. Nonracemic OCPs are found in air samples collected above soil which contains nonracemic residues. The enantiomer profiles of chlordanes in ambient air suggests that most chlordane in northern Alabama air comes from racemic sources (e.g., termiticide emissions), whereas a mixture of racemic and nonracemic (volatilisation from soil) sources supplies chlordane to air in the Great Lakes region. Chlordanes and HEPX are also nonracemic in arctic air, probably the result of soil emissions from lower latitudes. The (+) enantiomer of alpha-hexachlorocyclohexane (alpha-HCH) is preferentially metabolised in the Arctic Ocean, arctic lakes and watersheds, the North American Great Lakes, and the Baltic Sea. In some marine regions (the Bering and Chukchi Seas, parts of the North Sea) the preference is reversed and (-)alpha-HCH is depleted. Volatilisation from seas and large lakes can be traced by the appearance of nonracemic alpha-HCH in the air boundary layer above the water. Estimates of microbial degradation rates for alpha-HCH in the eastern Arctic Ocean and an arctic lake have been made from the enantiomer fractions (EFs) and mass balance in the water column. Apparent pseudo first-order rate constants in the eastern Arctic Ocean are 0.12 year(-1) for (+)alpha-HCH, 0.030 year(-1) for (-)alpha-HCH, and 0.037 year(-1) for achiral gamma-HCH. These rate constants are 3-10 times greater than those for basic hydrolysis in seawater. Microbial breakdown may compete with advective outflow for long-term removal of HCHs from the Arctic Ocean. Rate constants estimated for the arctic lake are about 3-8 times greater than those in the ocean.


Subject(s)
Hydrocarbons, Chlorinated , Insecticides/analysis , Insecticides/chemistry , Soil/analysis , Water/analysis , Animals , Atmosphere/analysis , Atmosphere/chemistry , Environmental Monitoring/methods , Forecasting , Humans , Insecticides/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Stereoisomerism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...