Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters










Publication year range
1.
Molecules ; 29(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474536

ABSTRACT

The lipid phosphatase Ship2 interacts with the EphA2 receptor by forming a heterotypic Sam (sterile alpha motif)-Sam complex. Ship2 works as a negative regulator of receptor endocytosis and consequent degradation, and anti-oncogenic effects in cancer cells should be induced by hindering its association with EphA2. Herein, a computational approach is presented to investigate the relationship between Ship2-Sam/EphA2-Sam interaction and cancer onset and further progression. A search was first conducted through the COSMIC (Catalogue of Somatic Mutations in Cancer) database to identify cancer-related missense mutations positioned inside or close to the EphA2-Sam and Ship2-Sam reciprocal binding interfaces. Next, potential differences in the chemical-physical properties of mutant and wild-type Sam domains were evaluated by bioinformatics tools based on analyses of primary sequences. Three-dimensional (3D) structural models of mutated EphA2-Sam and Ship2-Sam domains were built as well and deeply analysed with diverse computational instruments, including molecular dynamics, to classify potentially stabilizing and destabilizing mutations. In the end, the influence of mutations on the EphA2-Sam/Ship2-Sam interaction was studied through docking techniques. This in silico approach contributes to understanding, at the molecular level, the mutation/cancer relationship by predicting if amino acid substitutions could modulate EphA2 receptor endocytosis.


Subject(s)
Neoplasms , Receptor, EphA2 , Sterile Alpha Motif , Receptor, EphA2/chemistry , Protein Binding , Mutation , Phosphoric Monoester Hydrolases/metabolism , Lipids
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339078

ABSTRACT

Over the last few decades, we have witnessed growing interest from both academic and industrial laboratories in peptides as possible therapeutics. Bioactive peptides have a high potential to treat various diseases with specificity and biological safety. Compared to small molecules, peptides represent better candidates as inhibitors (or general modulators) of key protein-protein interactions. In fact, undruggable proteins containing large and smooth surfaces can be more easily targeted with the conformational plasticity of peptides. The discovery of bioactive peptides, working against disease-relevant protein targets, generally requires the high-throughput screening of large libraries, and in silico approaches are highly exploited for their low-cost incidence and efficiency. The present review reports on the potential challenges linked to the employment of peptides as therapeutics and describes computational approaches, mainly structure-based virtual screening (SBVS), to support the identification of novel peptides for therapeutic implementations. Cutting-edge SBVS strategies are reviewed along with examples of applications focused on diverse classes of bioactive peptides (i.e., anticancer, antimicrobial/antiviral peptides, peptides blocking amyloid fiber formation).


Subject(s)
Peptide Library , Peptides , Peptides/chemistry , Proteins/chemistry , Antimicrobial Peptides
3.
Inorg Chem ; 63(1): 564-575, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38117944

ABSTRACT

The physical and chemical properties of paddlewheel diruthenium compounds are highly dependent on the nature of the ligands surrounding the bimetallic core. Herein, we compare the ability of two diruthenium compounds, [Ru2Cl(D-p-FPhF)(O2CCH3)3]·H2O (1) (D-p-FPhF- = N,N'-bis(4-fluorophenyl)formamidinate) and K3[Ru2(O2CO)4]·3H2O (2), to act as inhibitors of amyloid aggregation of the Aß1-42 peptide and its peculiar fragments, Aß1-16 and Aß21-40. A wide range of biophysical techniques has been used to determine the inhibition capacity against aggregation and the possible mechanism of action of these compounds (Thioflavin T fluorescence and autofluorescence assays, UV-vis absorption spectroscopy, circular dichroism, nuclear magnetic resonance, mass spectrometry, and electron scanning microscopy). Data show that the most effective inhibitory effect is shown for compound 1. This compound inhibits fiber formation and completely abolishes the cytotoxicity of Aß1-42. The antiaggregatory capacity of this complex can be explained by a binding mechanism of the dimetallic units to the peptide chain along with π-π interactions between the formamidinate ligand and the aromatic side chains. The results suggest the potential use of paddlewheel diruthenium complexes as neurodrugs and confirm the importance of the steric and charge effects on the properties of diruthenium compounds.


Subject(s)
Amyloid beta-Peptides , Peptide Fragments , Peptide Fragments/chemistry , Amyloid beta-Peptides/chemistry , Circular Dichroism
4.
Curr Med Chem ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37828671

ABSTRACT

BACKGROUND: The receptor tyrosine kinase EphA2 plays a role in many diseases, like cancer, cataracts, and osteoporosis. Interestingly, it has also been linked to viral infections. OBJECTIVE: Herein, current literature has been reviewed to clarify EphA2 functions in viral infections and explore its potential role as a target in antiviral drug discovery strategies. METHODS: Research and review articles and preprints connecting EphA2 to different viruses have been searched through PubMed and the web. Structures of complexes between EphA2 domains and viral proteins have been retrieved from the PDB database. RESULTS: EphA2 assumes a key role in Kaposi's sarcoma-associated herpes virus (KSHV) and Epstein Barr virus (EBV) infections by directly binding, through its ligand binding domain, viral glycoproteins. For human cytomegalovirus (HCMV), the role of EphA2 in maintaining virus latency state, through cooperation with specific viral proteins, has also been speculated. In certain cells, with high EphA2 expression levels, following ligand stimulation, receptor activation might contribute to severe symptoms accompanying a few viral infections, including lung injuries often related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). CONCLUSION: Since EphA2 works as a host receptor for certain viruses, it might be worth more deeply investigating known compounds targeting its extracellular ligand binding domain as antiviral therapeutics. Due to EphA2's function in inflammation, its possible correlation with SARS-CoV-2 cannot be excluded, but more experimental studies are needed in this case to undoubtedly attribute the role of this receptor in viral infections.

5.
Bioconjug Chem ; 34(8): 1429-1438, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37486977

ABSTRACT

Peptide nucleic acids and their conjugates to peptides can self-assemble and generate complex architectures. In this work, we explored the self-assembly of PNA dimers conjugated to the dipeptide WW. Our studies suggest that the indole ring of tryptophan promotes aggregation of the conjugates. The onset of fluorescence is observed upon self-assembly. The structure of self-assembled WWgc is concentration-dependent, being spherical at low concentrations and fibrous at high concentrations. As suggested by molecular modeling studies, fibers are stabilized by stacking interactions between tryptophans and Watson-Crick hydrogen bonds between nucleobases.


Subject(s)
Peptide Nucleic Acids , Tryptophan , Peptide Nucleic Acids/chemistry , Dipeptides/chemistry , Peptides , Models, Molecular
6.
Curr Med Chem ; 30(28): 3158-3214, 2023.
Article in English | MEDLINE | ID: mdl-36200217

ABSTRACT

BACKGROUND: In the last few years, in silico tools, including drug repurposing coupled with structure-based virtual screening, have been extensively employed to look for anti-COVID-19 agents. OBJECTIVE: The present review aims to provide readers with a portrayal of computational approaches that could be conducted more quickly and cheaply to novel anti-viral agents. Particular attention is given to docking-based virtual screening. METHODS: The World Health Organization website was consulted to gain the latest information on SARS-CoV-2, its novel variants and their interplay with COVID-19 severity and treatment options. The Protein Data Bank was explored to look for 3D coordinates of SARS-CoV-2 proteins in their free and bound states, in the wild-types and mutated forms. Recent literature related to in silico studies focused on SARS-CoV-2 proteins was searched through PubMed. RESULTS: A large amount of work has been devoted thus far to computationally targeting viral entry and searching for inhibitors of the S-protein/ACE2 receptor complex. Another large area of investigation is linked to in silico identification of molecules able to block viral proteases -including Mpro- thus avoiding maturation of proteins crucial for virus life cycle. Such computational studies have explored the inhibitory potential of the most diverse molecule databases (including plant extracts, dietary compounds, FDA approved drugs). CONCLUSION: More efforts need to be dedicated in the close future to experimentally validate the therapeutic power of in silico identified compounds in order to catch, among the wide ensemble of computational hits, novel therapeutics to prevent and/or treat COVID- 19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Repositioning
7.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499032

ABSTRACT

In a protein, point mutations associated with diseases can alter the native structure and provide loss or alteration of functional levels, and an internal structural network defines the connectivity among domains, as well as aggregate/soluble states' equilibria. Nucleophosmin (NPM)1 is an abundant nucleolar protein, which becomes mutated in acute myeloid leukemia (AML) patients. NPM1-dependent leukemogenesis, which leads to its aggregation in the cytoplasm (NPMc+), is still obscure, but the investigations have outlined a direct link between AML mutations and amyloid aggregation. Protein aggregation can be due to the cooperation among several hot spots located within the aggregation-prone regions (APR), often predictable with bioinformatic tools. In the present study, we investigated potential APRs in the entire NPM1 not yet investigated. On the basis of bioinformatic predictions and experimental structures, we designed several protein fragments and analyzed them through typical aggrsegation experiments, such as Thioflavin T (ThT), fluorescence and scanning electron microscopy (SEM) experiments, carried out at different times; in addition, their biocompatibility in SHSY5 cells was also evaluated. The presented data clearly demonstrate the existence of hot spots of aggregation located in different regions, mostly in the N-terminal domain (NTD) of the entire NPM1 protein, and provide a more comprehensive view of the molecular details potentially at the basis of NPMc+-dependent AML.


Subject(s)
Leukemia, Myeloid, Acute , Nucleophosmin , Humans , Amyloid/metabolism , Amyloidogenic Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Nuclear Proteins/metabolism , Nucleophosmin/genetics
8.
Eur J Med Chem ; 243: 114781, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36152385

ABSTRACT

Suppressors of cytokine signaling 1 (SOCS1) protein, a negative regulator of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, possesses a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Several studies showed that mimetics of KIR-SOCS1 can be potent therapeutics in several disorders (e.g., neurological, autoimmune or cardiovascular diseases). In this work, starting from a recently identified cyclic peptidomimetic of KIR-SOCS1, icPS5(Nal1), to optimize the peptide structure and improve its biological activity, we designed novel derivatives, containing crucial amino acids substitutions and/or modifications affecting the ring size. By combining microscale thermophoresis (MST), Circular Dichroism (CD), Nuclear Magnetic Resonance (NMR) and computational studies, we showed that the cycle size plays a key role in the interaction with JAK2 and the substitution of native residues with un-natural building blocks is a valid tool to maintain low-micromolar affinity toward JAK2, greatly increasing their serum stability. These findings contribute to increase the structural knowledge required for the recognition of SOCS1/JAK2 and to progress towards their conversion into more drug-like compounds.


Subject(s)
Janus Kinases , Suppressor of Cytokine Signaling Proteins , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/chemistry , Suppressor of Cytokine Signaling Proteins/metabolism , Janus Kinases/metabolism , Signal Transduction , Cytokines/metabolism
9.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36142306

ABSTRACT

Among the diverse protein binding modules, Sam (Sterile alpha motif) domains attract attention due to their versatility. They are present in different organisms and play many functions in physiological and pathological processes by binding multiple partners. The EphA2 receptor contains a Sam domain at the C-terminus (EphA2-Sam) that is able to engage protein regulators of receptor stability (including the lipid phosphatase Ship2 and the adaptor Odin). Ship2 and Odin are recruited by EphA2-Sam through heterotypic Sam-Sam interactions. Ship2 decreases EphA2 endocytosis and consequent degradation, producing chiefly pro-oncogenic outcomes in a cellular milieu. Odin, through its Sam domains, contributes to receptor stability by possibly interfering with ubiquitination. As EphA2 is upregulated in many types of tumors, peptide inhibitors of Sam-Sam interactions by hindering receptor stability could function as anticancer therapeutics. This review describes EphA2-Sam and its interactome from a structural and functional perspective. The diverse design strategies that have thus far been employed to obtain peptides targeting EphA2-mediated Sam-Sam interactions are summarized as well. The generated peptides represent good initial lead compounds, but surely many efforts need to be devoted in the close future to improve interaction affinities towards Sam domains and consequently validate their anticancer properties.


Subject(s)
Antineoplastic Agents , Receptor, EphA2 , Antineoplastic Agents/pharmacology , Lipids , Peptides/chemistry , Phosphoric Monoester Hydrolases/metabolism , Protein Binding , Receptor, EphA2/metabolism
10.
Pharmaceutics ; 14(8)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893800

ABSTRACT

Self-assembled peptides possess remarkable potential as targeted drug delivery systems and key applications dwell anti-cancer therapy. Peptides can self-assemble into nanostructures of diverse sizes and shapes in response to changing environmental conditions (pH, temperature, ionic strength). Herein, we investigated the development of self-assembled peptide-based nanofibers (NFs) with the inclusion of a cell-penetrating peptide (namely gH625) and a matrix metalloproteinase-9 (MMP-9) responsive sequence, which proved to enhance respectively the penetration and tumor-triggered cleavage to release Doxorubicin in Triple Negative Breast Cancer cells where MMP-9 levels are elevated. The NFs formulation has been optimized via critical micelle concentration measurements, fluorescence, and circular dichroism. The final nanovectors were characterized for morphology (TEM), size (hydrodynamic diameter), and surface charge (zeta potential). The Doxo loading and release kinetics were studied in situ, by optical microspectroscopy (fluorescence and surface-enhanced Raman scattering-SERS). Confocal spectral imaging of the Doxo fluorescence was used to study the TNBC models in vitro, in cells with various MMP-9 levels, the drug delivery to cells as well as the resulting cytotoxicity profiles. The results confirm that these NFs are a promising platform to develop novel nanovectors of Doxo, namely in the framework of TNBC treatment.

11.
Chemistry ; 28(37): e202200693, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35474351

ABSTRACT

Self-assembly of biomolecules such as peptides, nucleic acids or their analogues affords supramolecular objects, exhibiting structures and physical properties dependent on the amino-acid or nucleobase composition. Conjugation of the peptide diphenylalanine (FF) to peptide nucleic acids triggers formation of self-assembled structures, mainly stabilized by interactions between FF. In this work we report formation of homogeneous chiral fibers upon self-assembly of the hybrid composed of the tetraphenylalanine peptide (4F) conjugated to the PNA dimer adenine-thymine (at). In this case nucleobases seem to play a key role in determining the morphology and chirality of the fibers. When the PNA "at" is replaced by guanine-cytosine dimer "gc", disordered structures are observed. Spectroscopic characterization of the self-assembled hybrids, along with AFM and SEM studies is reported. Finally, a structural model consistent with the experimental evidence has also been obtained, showing how the building blocks of 4Fat arrange to give helical fibers.


Subject(s)
Nanostructures , Peptide Nucleic Acids , Nanostructures/chemistry , Peptide Nucleic Acids/chemistry , Peptides/chemistry , Phenylalanine/chemistry , Polymers , Thymine
12.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35455455

ABSTRACT

SOCS3 (suppressor of cytokine signaling 3) protein suppresses cytokine-induced inflammation and its deletion in neurons or immune cells increases the pathological growth of blood vessels. Recently, we designed several SOCS3 peptidomimetics by assuming as template structures the interfacing regions of the ternary complex constituted by SOCS3, JAK2 (Janus Kinase 2) and gp130 (glycoprotein 130) proteins. A chimeric peptide named KIRCONG chim, including non-contiguous regions demonstrated able to bind to JAK2 and anti-inflammatory and antioxidant properties in VSMCs (vascular smooth muscle cells). With the aim to improve drug-like features of KIRCONG, herein we reported novel cyclic analogues bearing different linkages. In detail, in two of them hydrocarbon cycles of different lengths were inserted at positions i/i+5 and i/i+7 to improve helical conformations of mimetics. Structural features of cyclic compounds were investigated by CD (Circular Dichroism) and NMR (Nuclear Magnetic Resonance) spectroscopies while their ability to bind to catalytic domain of JAK2 was assessed through MST (MicroScale Thermophoresis) assay as well as their stability in biological serum. Overall data indicate a crucial role exerted by the length and the position of the cycle within the chimeric structure and could pave the way to the miniaturization of SOCS3 protein for therapeutic aims.

13.
Bioorg Chem ; 122: 105680, 2022 05.
Article in English | MEDLINE | ID: mdl-35248981

ABSTRACT

The lipid phosphatase Ship2 binds the EphA2 receptor through a heterotypic Sam-Sam (Sterile alpha motif) interaction. Inhibitors of the Ship2-Sam/EphA2-Sam complex hold a certain potential as novel anticancer agents. The previously reported "KRI3" peptide binds Ship2-Sam working as a weak antagonist of the EphA2-Sam/Ship2-Sam interaction. Herein, the design and functional evaluation of KRI3 analogues, both linear and cyclic, are described. A multidisciplinary study was conducted through computational docking techniques, and conformational analyses by CD and NMR spectroscopies. The ability of new peptides to bind Ship2-Sam was analysed by NMR, MST and SPR assays. Studies on linear KRI3 analogues pointed out that aromatic interactions through tyrosines are important for the association with Ship2-Sam whereas, an increase of the net positive charge of the sequence or peptide cyclization through a disulfide bridge can favour unspecific interactions without a substantial improvement of the binding affinity to Ship2-Sam. Interestingly, preliminary cell-based assays demonstrated KRI3 cellular uptake even without the conjugation to a cell penetrating sequence with a main cytosolic localization. This work highlights important features of the KRI3 peptide that can be further exploited to design analogues able to hamper Sam-Sam interactions driven by electrostatic contacts.


Subject(s)
Receptor, EphA2 , Sterile Alpha Motif , Ligands , Magnetic Resonance Spectroscopy , Peptides/chemistry , Receptor, EphA2/chemistry
14.
Inorg Chem ; 61(8): 3540-3552, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35171608

ABSTRACT

Neurodegenerative diseases are often caused by uncontrolled amyloid aggregation. Hence, many drug discovery processes are oriented to evaluate new compounds that are able to modulate self-recognition mechanisms. Herein, two related glycoconjugate pentacoordinate Pt(II) complexes were analyzed in their capacity to affect the self-aggregation processes of two amyloidogenic fragments, Aß21-40 and Aß25-35, of the C-terminal region of the ß-amyloid (Aß) peptide, the major component of Alzheimer's disease (AD) neuronal plaques. The most water-soluble complex, 1Ptdep, is able to bind both fragments and to deeply influence the morphology of peptide aggregates. Thioflavin T (ThT) binding assays, electrospray ionization mass spectrometry (ESI-MS), and ultraviolet-visible (UV-vis) absorption spectroscopy indicated that 1Ptdep shows different kinetics and mechanisms of inhibition toward the two sequences and demonstrated that the peptide aggregation inhibition is associated with a direct coordinative bond of the compound metal center to the peptides. These data support the in vitro ability of pentacoordinate Pt(II) complexes to inhibit the formation of amyloid aggregates and pave the way for the application of this class of compounds as potential neurotherapeutics.


Subject(s)
Amyloid beta-Peptides
15.
Molecules ; 26(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207044

ABSTRACT

Among biological macromolecules, proteins hold prominent roles in a vast array of physiological and pathological processes [...].


Subject(s)
Peptides/chemistry , Peptides/metabolism , Proteins/chemistry , Proteins/metabolism , Humans , Protein Conformation
16.
Chemistry ; 27(57): 14307-14316, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34314536

ABSTRACT

Peptides and nucleic acids can self-assemble to give supramolecular structures that find application in different fields, ranging from the delivery of drugs to the obtainment of materials endowed with optical properties. Forces that stabilize the "suprastructures" typically are hydrogen bonds or aromatic interactions; in case of nucleic acids, Watson-Crick pairing drives self-assembly while, in case of peptides, backbone hydrogen bonds and interactions between aromatic side chains trigger the formation of structures, such as nanotubes or ribbons. Molecules containing both aromatic peptides and nucleic acids could in principle exploit different forces to self-assemble. In this work we meant to investigate the self-assembly of mixed systems, with the aim to understand which forces play a major role and determine formation/structure of aggregates. We therefore synthesized conjugates of the peptide FF to the peptide nucleic acid dimer "gc" and characterized their aggregates by different spectroscopic techniques, including NMR, CD and fluorescence.


Subject(s)
Peptide Nucleic Acids , Hydrogen Bonding , Peptides , Phenylalanine
17.
Bioorg Chem ; 114: 105047, 2021 09.
Article in English | MEDLINE | ID: mdl-34098256

ABSTRACT

Peptide hydrogels, deriving from natural protein fragments, present unique advantages as compatibility and low cost of production that allow their wide application in different fields as wound healing, cell delivery and tissue regeneration. To engineer new biomaterials, the change of the chirality of single amino acids demonstrated a powerful approach to modulate the self-assembly mechanism. Recently we unveiled that a small stretch spanning residues 268-273 in the C-terminal domain (CTD) of Nucleophosmin 1 (NPM1) is an amyloid sequence. Herein, we performed a systematic D-scan of this sequence and analyzed the structural properties of obtained peptides. The conformational and kinetic features of self-aggregates and the morphologies of derived microstructures were investigated by means of different biophysical techniques, as well as the compatibility of hydrogels was evaluated in HeLa cells. All the investigated hexapeptides formed hydrogels even if they exhibited different conformational intermediates during aggregation, and they structural featured are finely tuned by introduced chiralities.


Subject(s)
Hydrogels/chemistry , Nucleophosmin/chemistry , Oligopeptides/chemistry , Peptide Fragments/chemistry , Cell Proliferation/drug effects , HeLa Cells , Humans , Hydrogels/toxicity , Nucleophosmin/toxicity , Oligopeptides/toxicity , Peptide Fragments/toxicity , Protein Multimerization , Stereoisomerism
18.
Eur J Med Chem ; 221: 113547, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34023736

ABSTRACT

Herein we investigated the structural and cellular effects ensuing from the cyclization of a potent inhibitor of JAK2 as mimetic of SOCS1 protein, named PS5. The introduction of un-natural residues and a lactam internal bridge, within SOCS1-KIR motif, produced candidates that showed high affinity toward JAK2 catalytic domain. By combining CD, NMR and computational studies, we obtained valuable models of the interactions of two peptidomimetics of SOCS1 to deepen their functional behaviors. Notably, when assayed for their biological cell responses mimicking SOCS1 activity, the internal cyclic PS5 analogues demonstrated able to inhibit JAK-mediated tyrosine phosphorylation of STAT1 and to reduce cytokine-induced proinflammatory gene expression, oxidative stress generation and cell migration. The present study well inserts in the field of low-molecular-weight proteomimetics with improved longtime cellular effects and adds a new piece to the puzzled way for the conversion of bioactive peptides into drugs.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Peptidomimetics/pharmacology , Protein Kinase Inhibitors/pharmacology , Suppressor of Cytokine Signaling 1 Protein/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Mice , Molecular Structure , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Suppressor of Cytokine Signaling 1 Protein/metabolism
19.
Curr Med Chem ; 28(22): 4380-4453, 2021.
Article in English | MEDLINE | ID: mdl-33371830

ABSTRACT

BACKGROUND: COVID-19 has brought the world to its knees, and there is an urgent need for new strategies to identify molecules capable of fighting the pandemic. During the last few decades, NMR (Nuclear Magnetic Resonance) spectroscopy has emerged as an intriguing structural biology instrument in the antiviral drug discovery field. OBJECTIVE: The review highlights how a variety of NMR-based tools can be employed to better understand viral machineries, develop anti-viral agents and set-up diagnostic and therapeutic routes. METHODS: Works summarized herein were searched through PubMed database and the Web. RESULTS: The review focuses on a subset of human viruses that have been largely studied through NMR techniques. Indeed, NMR solid- or solution-state methodologies allow to gain structural information on viral proteins and viral genomes either in isolation or bound to diverse binding partners. NMR data can be employed to set up structure-based approaches to design efficient antiviral agents inhibiting crucial steps of viral life cycle. In addition, NMR-based metabolomics analyses of biofluids from virus-infected patients let identify metabolites biomarkers of the disease and follow changes in metabolic profiles associated with antiviral therapy thus paving the way for novel diagnostic and therapeutic approaches. CONCLUSION: Considering the NMR-based work conducted on different viruses, we believe that in the near future, much more NMR efforts will be devoted to discovering novel anti SARS-CoV-2 agents.


Subject(s)
COVID-19 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Magnetic Resonance Spectroscopy , Pandemics , SARS-CoV-2
20.
Curr Med Chem ; 28(5): 854-892, 2021.
Article in English | MEDLINE | ID: mdl-31942846

ABSTRACT

BACKGROUND: Proteins present a modular organization made up of several domains. Apart from the domains playing catalytic functions, many others are crucial to recruit interactors. The latter domains can be defined as "PIDs" (Protein Interaction Domains) and are responsible for pivotal outcomes in signal transduction and a certain array of normal physiological and disease-related pathways. Targeting such PIDs with small molecules and peptides able to modulate their interaction networks, may represent a valuable route to discover novel therapeutics. OBJECTIVE: This work represents a continuation of a very recent review describing PIDs able to recognize post-translationally modified peptide segments. On the contrary, the second part concerns with PIDs that interact with simple peptide sequences provided with standard amino acids. METHODS: Crucial structural information on different domain subfamilies and their interactomes was gained by a wide search in different online available databases (including the PDB (Protein Data Bank), the Pfam (Protein family), and the SMART (Simple Modular Architecture Research Tool)). Pubmed was also searched to explore the most recent literature related to the topic. RESULTS AND CONCLUSION: PIDs are multifaceted: they have all diverse structural features and can recognize several consensus sequences. PIDs can be linked to different diseases onset and progression, like cancer or viral infections and find applications in the personalized medicine field. Many efforts have been centered on peptide/peptidomimetic inhibitors of PIDs mediated interactions but much more work needs to be conducted to improve drug-likeness and interaction affinities of identified compounds.


Subject(s)
Drug Discovery , Proteins , Humans , Peptides/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...