Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(48): 53827-53840, 2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33201669

ABSTRACT

Electrode materials with a high performance and stable cycling have been commercialized, but the utilization of state-of-the-art Li-ion batteries in high-current rate applications is restricted because of limitations in other battery components, in particular, the lack of an efficient binder. Herein, a novel multicomponent polymer gel binder (PGB) is presented, comprising the biopolymer chitosan as the host, embedded with the 1-butyl-1-methylpyrrolidinium dicyanamide (PYR14DCA) ionic liquid and the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. The multicomponent approach leads to carbon black arrangement along well-distributed chitosan chains in the electrodes, forming a highly electronic conductive network. Furthermore, the plasticizing effect of the ionic liquid leads to an enhanced ionic conductivity. As a result, shorter charge-transfer paths are enabled, leading to an exceptionally high rate capability in LiFePO4 and Li4Ti5O12 half cells, up to 50C. LiFePO4||Li4Ti5O12 full cells using the PGB for both electrodes also demonstrated stable cycling at 10C, with an impressively high discharge capacity of 173 mA h·g-1 after 1000 cycles. In addition, freestanding electrodes could also be realized and functioning flexible Li-ion cells were successfully demonstrated. Thus, the novel water-processable binder offers multifaceted advantages, making the approach highly promising for industrial implementation.

2.
ACS Appl Mater Interfaces ; 12(33): 37227-37238, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32687305

ABSTRACT

Lithium-ion batteries (LIBs) are nowadays widely used in many energy storage devices, which have certain requirements on size, weight, and performance. State-of-the-art LIBs operate very reliably and with good performance under restricted and controlled conditions but lack in efficiency and safety when these conditions are exceeded. In this work, the influence of outranging conditions in terms of charging rate and operating temperature on electrochemical characteristics was studied on the example of lithium titanate (Li4Ti5O12, LTO) electrodes. Structural processes in the electrode, cycled with ultrafast charge and discharge, were evaluated by operando synchrotron powder diffraction and ex situ X-ray absorption spectroscopy. On the basis of the Rietveld refinement, it was shown that the electrochemical storage mechanism is based on the Li-intercalation process at least up to current rates of 5C, meaning full battery charge within 12 min. For applications at temperatures between -30 and 60 °C, four carbonate-based electrolyte systems with different additives were tested for cycling performance in half-cells with LTO and metallic lithium as electrodes. It was shown that the addition of 30 wt % [PYR14][PF6] to the conventional LP30 electrolyte, usually used in LIBs, significantly decreases its melting point, which enables the successful low-temperature application at least down to -30 °C, in contrast to LP30, which freezes below -10 °C, making battery operation impossible. Moreover, at elevated temperatures up to 60 °C, batteries with the LP30/[PYR14][PF6] electrolyte exhibit stable long-term cycling behavior very close to LP30. Our findings provide a guideline for the application of LTO in LIBs beyond conventional conditions and show how to overcome limitations by designing appropriate electrolytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...