Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancer Res ; 80(12): 2651-2662, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32291318

ABSTRACT

Ceramide-induced endothelial cell apoptosis boosts intestinal stem cell radiosensitivity. However, the molecular connection between these two cellular compartments has not been clearly elucidated. Here we report that ceramide and its related enzyme acid sphingomyelinase (ASM) are secreted by irradiated endothelial cells and act as bystander factors to enhance the radiotoxicity of intestinal epithelium. Ceramide and the two isoforms of ASM were acutely secreted in the blood serum of wild-type mice after 15 Gy radiation dose, inducing a gastrointestinal syndrome. Interestingly, serum ceramide was not enhanced in irradiated ASMKO mice, which are unable to develop intestinal failure injury. Because ASM/ceramide were secreted by primary endothelial cells, their contribution was studied in intestinal epithelium dysfunction using coculture of primary endothelial cells and intestinal T84 cells. Adding exogenous ASM or ceramide enhanced epithelial cell growth arrest and death. Conversely, blocking their secretion by endothelial cells using genetic, pharmacologic, or immunologic approaches abolished intestinal T84 cell radiosensitivity. Use of enteroid models revealed ASM and ceramide-mediated deleterious mode-of-action: when ceramide reduced the number of intestinal crypt-forming enteroids without affecting their structure, ASM induced a significant decrease of enteroid growth without affecting their number. Identification of specific and different roles for ceramide and ASM secreted by irradiated endothelial cells opens new perspectives in the understanding of intestinal epithelial dysfunction after radiation and defines a new class of potential therapeutic radiomitigators. SIGNIFICANCE: This study identifies secreted ASM and ceramide as paracrine factors enhancing intestinal epithelial dysfunction, revealing a previously unknown class of mediators of radiosensitivity.


Subject(s)
Ceramides/metabolism , Endothelial Cells/metabolism , Intestinal Mucosa/pathology , Radiation Injuries/pathology , Sphingomyelin Phosphodiesterase/metabolism , Animals , Bystander Effect/radiation effects , Cells, Cultured , Ceramides/blood , Coculture Techniques , Desipramine/pharmacology , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/radiation effects , Epithelial Cells/drug effects , Epithelial Cells/pathology , Epithelial Cells/radiation effects , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Intestinal Mucosa/radiation effects , Male , Mice , Mice, Knockout , Paracrine Communication/genetics , Paracrine Communication/radiation effects , Primary Cell Culture , RNA, Small Interfering/metabolism , Radiation Injuries/blood , Radiation Injuries/etiology , Radiation Injuries/prevention & control , Radiation Tolerance/drug effects , Radiation Tolerance/genetics , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/blood , Sphingomyelin Phosphodiesterase/genetics
2.
Cell Death Dis ; 11(4): 228, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32273493

ABSTRACT

The integral membrane protein caveolin-1 (CAV1) plays a central role in radioresistance-mediating tumor-stroma interactions of advanced prostate cancer (PCa). Among the tumor-stroma, endothelial cells (EC) evolved as critical determinants of the radiation response. CAV1 deficiency in angiogenic EC was already shown to account for increased apoptosis rates of irradiated EC. This study explores the potential impact of differential CAV1 levels in EC on the acid sphingomyelinase (ASMase)/ceramide pathway as a key player in the regulation of EC apoptosis upon irradiation and cancer cell radioresistance. Enhanced apoptosis sensitivity of CAV1-deficient EC was associated with increased ASMase activity, ceramide generation, formation of large lipid platforms, and finally an altered p38 mitogen-activated protein kinase (MAPK)/heat-shock protein 27 (HSP27)/AKT (protein kinase B, PKB) signaling. CAV1-deficient EC increased the growth delay of LNCaP and PC3 PCa cells upon radiation treatment in direct 3D spheroid co-cultures. Exogenous C6 and C16 ceramide treatment in parallel increased the growth delay of PCa spheroids and induced PCa cell apoptosis. Analysis of the respective ceramide species in PCa cells with increased CAV1 levels like those typically found in radio-resistant advanced prostate tumors further revealed an upregulation of unsaturated C24:1 ceramide that might scavenge the effects of EC-derived apoptosis-inducing C16 ceramide. Higher ASMase as well as ceramide levels could be confirmed by immunohistochemistry in human advanced prostate cancer specimen bearing characteristic CAV1 tumor-stroma alterations. Conclusively, CAV1 critically regulates the generation of ceramide-dependent (re-)organization of the plasma membrane that in turn affects the radiation response of EC and adjacent PCa cells. Understanding the CAV1-dependent crosstalk between tumor cells and the host-derived tumor microvasculature and its impact on radiosensitivity may allow to define a rational strategy for overcoming tumor radiation resistance improving clinical outcomes by targeting CAV1.


Subject(s)
Caveolin 1/metabolism , Ceramides/metabolism , Endothelial Cells/radiation effects , Prostatic Neoplasms/pathology , Prostatic Neoplasms/radiotherapy , Sphingomyelin Phosphodiesterase/metabolism , Stromal Cells/pathology , Caveolin 1/biosynthesis , Caveolin 1/deficiency , Cell Communication/physiology , Cell Communication/radiation effects , Cell Line, Tumor , Ceramides/biosynthesis , Ceramides/pharmacology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , MAP Kinase Signaling System/radiation effects , Male , PC-3 Cells , Prostatic Neoplasms/metabolism , Radiation Tolerance , Signal Transduction , Stromal Cells/metabolism , Tumor Microenvironment
3.
Front Pharmacol ; 9: 406, 2018.
Article in English | MEDLINE | ID: mdl-29740325

ABSTRACT

Red wine polyphenol extracts improve cardiovascular and metabolic disorders linked to obesity. Their vascular protection is mediated by the activation of the alpha isoform of the estrogen receptor (ERα). In the present study, we explored the effects of a grape seed extract (GSE) enriched in the flavan-3-ols procyanidin dimers on obesity-related cardiovascular and metabolic disorders; with a particular interest in the role/contribution of ERα. Ovariectomized wild type or ERα knockout (KO) mice were fed with standard or western diet, supplemented or not with GSE, for 12 weeks. Their body weight was monitored throughout the study, and an echocardiography was performed at the end of the treatment. Blood and tissues were collected for biochemical and functional analysis, including nitric oxide and oxidative stress measurement. Vascular reactivity and liver mitochondrial complexes activity were also analyzed. In western diet-fed mice, GSE reduced adiposity, plasma triglycerides, and oxidative stress in the heart, liver, adipose and skeletal tissues; but did not improve the vascular dysfunction. In western diet-fed mice, ERα deletion prevented or reduced the beneficial effects of GSE on plasma triglycerides and visceral adiposity. ERα deletion also prevented/reduced the anti-oxidant effect of GSE in the liver, but did not affect its capacity to reduce oxidative stress in the heart and adipose tissue. In conclusion, dietary supplementation of GSE attenuated features of metabolic syndrome partially through ERα-dependent mechanisms. This report highlights the therapeutic potential of polyphenols, and especially extract enriched in procyanidin dimers, against the metabolic disorders associated with excessive energy intake.

4.
Pharmacol Res ; 126: 31-53, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28223185

ABSTRACT

Melanoma originated from melanocytes is the most aggressive type of skin cancer. Despite considerable progresses in clinical treatment with the discovery of BRAF or MEK inhibitors and monoclonal antibodies, the durability of response to treatment is often limited to the development of acquired resistance and systemic toxicity. The limited success of conventional treatment highlights the importance of understanding the role of melanoma tumor microenvironment in tumor developement and drug resistance. Nanoparticles represent a promising strategy for the development of new cancer treatments able to improve the bioavailability of drugs and increase their penetration by targeting specifically tumors cells and/or tumor environment. In this review, we will discuss the main influence of tumor microenvironment in melanoma growth and treatment outcome. Furthermore, third generation loaded nanotechnologies represent an exciting tool for detection, treatment, and escape from possible mechanism of resistance mediated by tumor microenvironment, and will be highlighted in this review.


Subject(s)
Melanoma/drug therapy , Nanoparticles/administration & dosage , Skin Neoplasms/drug therapy , Tumor Microenvironment/drug effects , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Drug Delivery Systems/methods , Drug Resistance, Neoplasm/drug effects , Humans , Nanomedicine/methods
5.
Front Pharmacol ; 7: 529, 2016.
Article in English | MEDLINE | ID: mdl-28119607

ABSTRACT

Red wine polyphenol extracts (polyphenols) ameliorate cardiovascular and metabolic disorders associated with obesity. Previously, we demonstrated that the alpha isoform of estrogen receptor (ERα) triggers the vascular protection of polyphenols. Here, we investigated the contribution of ERα on the effects of polyphenols on cardiovascular and metabolic alterations associated with obesity. We used ovariectomized wild type or ERα-deficient mice receiving standard (SD) or western (WD) diets, or SD and WD containing polyphenols (SD+polyphenols and WD+polyphenols, respectively) over a 12-week period. Body weight was measured during treatment. Echocardiography examination was performed before sacrifice. Blood and tissues were sampled for biochemical and functional analysis with respect to nitric oxide (NO•) and oxidative stress. Vascular reactivity and liver mitochondrial complexes were analyzed. In WD-fed mice, polyphenols reduced adiposity, plasma triglycerides and oxidative stress in aorta, heart, adipose and liver tissues and enhanced NO• production in aorta and liver. ERα deletion prevented or reduced the beneficial effects of polyphenols, especially visceral adiposity, aortic and liver oxidative stresses and NO• bioavailability. ERα deletion, however, had no effect on polyphenol's ability to decrease the fat accumulation and oxidative stress of subcutaneous adipose tissue. Also, ERα deletion did not modify the decrease of ROS levels induced by polyphenols treatment in the visceral adipose tissue and heart from WD-fed mice. Dietary supplementation of polyphenols remarkably attenuates features of metabolic syndrome; these effects are partially mediated by ERα-dependent mechanisms. This study demonstrates the therapeutic potential of this extract in metabolic and cardiovascular alterations linked to excessive energy intake.

6.
PLoS One ; 8(9): e73088, 2013.
Article in English | MEDLINE | ID: mdl-24019899

ABSTRACT

BACKGROUND: Microparticles (MPs) are small vesicles released during cell activation or apoptosis. They are involved in coagulation, inflammation and vascular dysfunction in several diseases. We characterized circulating MPs from Crohn's Disease (CD) patients and evaluated their effects on endothelial function and vascular reactivity after in vivo injection into mice. METHODS: Circulating MPs and their cellular origins were examined by flow cytometry from blood samples from healthy subjects (HS) and inactive or active CD patients. MPs were intravenously injected into mice. After 24 hours, endothelial function and vascular reactivity were assessed. RESULTS: Circulating MP levels did not differ between HS and inactive CD patients except for an increase in leukocyte-derived MPs in CD. Active CD patients compared to HS displayed increased total circulating MPs, pro-coagulant MPs and those from platelets, endothelium, erythrocytes, leukocytes, activated leukocytes and activated platelets. A significant correlation was found between total levels of MPs, those from platelets and endothelial cells, and the Harvey-Bradshaw clinical activity index. MPs from CD, but not from HS, impaired endothelium-dependent relaxation in mice aorta and flow-induced dilation in mice small mesenteric arteries, MPs from inactive CD patients being more effective than those from active patients. CDMPs induced vascular hypo-reactivity in aorta that was prevented by a nitric oxide (NO)-synthase inhibitor, and was associated with a subtle alteration of the balance between NO, reactive oxygen species and the release of COX metabolites. CONCLUSIONS: We provide evidence that MPs from CD patients significantly alter endothelial and vascular function and therefore, may play a role in CD pathophysiology, at least by contributing to uncontrolled vascular-dependent intestinal damage.


Subject(s)
Crohn Disease/physiopathology , Endothelium, Vascular/physiopathology , Microspheres , Adult , Animals , Electron Spin Resonance Spectroscopy , Female , Flow Cytometry , Humans , Male , Mice
7.
PLoS One ; 8(8): e72861, 2013.
Article in English | MEDLINE | ID: mdl-23977364

ABSTRACT

Microparticles are small fragments of the plasma membrane generated after cell stimulation. We recently showed that Sonic hedgehog (Shh) is present in microparticles generated from activated/apoptotic human T lymphocytes and corrects endothelial injury through nitric oxide (NO) release. This study investigates whether microparticles bearing Shh correct angiotensin II-induced hypertension and endothelial dysfunction in mice. Male Swiss mice were implanted with osmotic minipumps delivering angiotensin II (0.5 mg/kg/day) or NaCl (0.9%). Systolic blood pressure and heart rate were measured daily during 21 days. After 7 day of minipump implantation, mice received i.v. injections of microparticles (10 µg/ml) or i.p. Shh receptor antagonist cyclopamine (10 mg/kg/2 days) during one week. Angiotensin II induced a significant rise in systolic blood pressure without affecting heart rate. Microparticles reversed angiotensin II-induced hypertension, and cyclopamine prevented the effects of microparticles. Microparticles completely corrected the impairment of acetylcholine- and flow-induced relaxation in vessels from angiotensin II-infused mice. The improvement of endothelial function induced by microparticles was completely prevented by cyclopamine treatment. Moreover, microparticles alone did not modify NO and O2 . (-) production in aorta, but significantly increased NO and reduced O2. (-) productions in aorta from angiotensin II-treated mice, and these effects were blocked by cyclopamine. Altogether, these results show that microparticles bearing Shh correct angiotensin II-induced hypertension and endothelial dysfunction in aorta through a mechanism associated with Shh-induced NO production and reduction of oxidative stress. These microparticles may represent a new therapeutic approach in cardiovascular diseases associated with decreased NO production.


Subject(s)
Cell-Derived Microparticles/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Hedgehog Proteins/metabolism , Hypertension/physiopathology , Hypertension/therapy , Acetylcholine/metabolism , Angiotensin II/administration & dosage , Animals , Anions/metabolism , Aorta/metabolism , Aorta/pathology , Aorta/physiopathology , Blood Pressure , Cell Line , Coronary Circulation , Heart Rate , Humans , Hypertension/chemically induced , Hypertension/metabolism , In Vitro Techniques , Infusion Pumps , Male , Mesenteric Arteries/pathology , Mesenteric Arteries/physiopathology , Mice , Nitric Oxide/metabolism , Oxidative Stress , Superoxides/metabolism , Systole , Vasodilation
8.
Clin Sci (Lond) ; 125(2): 77-85, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23379624

ABSTRACT

During sepsis, inflammation can be orchestrated by the interaction between circulating and vascular cells that, under activation, release MPs (microparticles). Previously, we reported that increased circulating MPs in patients with sepsis play a pivotal role in ex vivo vascular function suggesting that they are protective against vascular hyporeactivity. The present study was designed to investigate the effects of MPs from patients with sepsis on the contractile response of TEVM (tissue-engineered vascular media). TEVM that were composed only of a media layer were produced by tissue engineering from human arterial SMCs (smooth muscle cells) isolated from umbilical cords. TEVM was incubated with MPs isolated from whole blood of 16 patients with sepsis. TEVM were incubated for 24 h with MPs and used for the study of vascular contraction, direct measurements of NO and O2- (superoxide anion) production by EPR and quantification of mRNA cytokine expression. MPs from patients with sepsis increased contraction induced by histamine in TEVM. This effect was not associated with inflammation, neither linked to the activation of NF-κB (nuclear factor κB) pathway nor to the increase in iNOS (inducible NO synthase) and COX (cyclo-oxygenase)-2 expression. In contrast, mRNA expression of IL (interleukin)-10 was enhanced. Then, we investigated the effect of IL-10 on vascular hyporeactivity induced by LPS (lipopolysaccharide). Although IL-10 treatment did not modify the contractile response in TEVM by itself, this interleukin restored contraction in LPS-treated TEVM. In addition, IL-10 treatment both prevented vascular hyporeactivity induced by LPS injection in mice and improved survival of LPS-injected mice. These findings show an association between the capacity of MPs from patients with sepsis to restore vascular hyporeactivity induced by LPS and their ability to increase IL-10 in the tissue-engineered blood vessel model.


Subject(s)
Cell-Derived Microparticles/physiology , Histamine/physiology , Interleukin-10/metabolism , Muscle, Smooth, Vascular/physiopathology , Sepsis/physiopathology , Aged , Animals , Female , Humans , Lipopolysaccharides , Male , Mice , Middle Aged , Myocytes, Smooth Muscle/physiology , Oxidative Stress , RNA, Messenger/metabolism , Shock/metabolism , Tissue Engineering , Umbilical Arteries/cytology
9.
Trends Pharmacol Sci ; 32(11): 659-65, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21794929

ABSTRACT

Cells communicate with other cells not only via direct cell-cell contact and the production of signaling molecules but also through release of microparticles (MPs). MPs are small vesicles released from stimulated and/or apoptotic cells. They harbor membrane proteins that are characteristic of the original parent cell and intracellular components involved in cell signaling. MPs are considered to be both biomarkers and effectors of cell signaling that maintain and/or initiate cell dysfunction. Thus, MPs can evoke endothelial dysfunction by decreasing nitric oxide (NO) production and promoting vascular inflammation which favor the prothrombotic state in atherosclerosis. Novel pharmacological approaches targeting MP production or properties could be used to treat cardiovascular pathologies. Paradoxically, another useful approach might be to employ engineered MPs with modified compositions as therapeutic agents to correct cardiovascular pathologies. This review is focused on the mechanisms of MP formation and their effects on target cells under physiological or pathophysiological conditions.


Subject(s)
Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/physiopathology , Cell-Derived Microparticles/physiology , Molecular Targeted Therapy , Blood Platelets/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cardiovascular System/metabolism , Cell-Derived Microparticles/pathology , Humans , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...