Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(58): 122580-122600, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37971587

ABSTRACT

Given the significance of fostering sustainable climate conditions for long-term economic stability and financial resilience, this study probes the connection between climate-related policy ambiguity and its implications for currency valuation. In doing so, the current study investigates the interconnected effects of climate policy on economic policy uncertainty and geopolitical risk with the currency valuation in ASEAN countries. Employing wavelet coherence analysis and partial wavelet coherence analysis, the paper highlights the complex relationships among these factors and their implications for exchange rate fluctuations. Using data from 2000 to 2022, the findings reveal that climate policy uncertainty is an important driver of exchange rate movements, amplifying the impact of economic policy uncertainty and geopolitical risk. Furthermore, the study identifies a vicious cycle between climate policy uncertainty and exchange rates, potentially impacting the region's macroeconomic stability and long-term economic growth. The study presents several policy recommendations to address economic and climate policy uncertainties comprehensively based on the findings. These recommendations include establishing national frameworks for climate risk management, enhancing policy credibility and macroeconomic stability, and promoting regional integration to mitigate the influence of geopolitical risk on exchange rates.


Subject(s)
Climate , Policy , Uncertainty , Climate Change , Risk Management , Economic Development
2.
Sci Total Environ ; 867: 161452, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36623649

ABSTRACT

Global warming impacts on plant growth and food safety are emerging topics of concern, while biochar as a soil additive benefits plants. This study investigates (1) sunflower plant growth at various biochar concentrations in a soil-compost growing substrate under both ambient (420 ppm) and elevated (740 ppm) atmospheric CO2 concentrations, and (2) concentrations of heavy metals in the growing substrates and organs of the plants. The elevated CO2 concentration benefits the vegetative parts but harms the reproductive parts of the plants. Additionally, the elevated CO2 concentration inhibits the beneficial effects that biochar confers on the plants at the ambient concentration. The optimum biochar concentration at both CO2 levels was found to be 15%. At the time of harvest, most of the heavy-metal concentrations in the growing substrate increased. It was demonstrated that biochar can reduce the amount of heavy metals that accumulate in the roots and seeds whose heavy-metal concentrations complied with Singapore food safety regulations, while those for the biochar met the proposed Singapore biochar standard's thresholds. Our results show that the proposed Singapore biochar standard is practical and sound.


Subject(s)
Helianthus , Metals, Heavy , Soil Pollutants , Carbon Dioxide , Soil Pollutants/analysis , Metals, Heavy/analysis , Soil , Charcoal , Crops, Agricultural
3.
Sci Total Environ ; 781: 146573, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-33798876

ABSTRACT

Organic waste, the predominant component of global solid waste, has never been higher, resulting in increased landfilling, incineration, and open dumping that releases greenhouse gases and toxins that contribute to global warming and environmental pollution. The need to create and adopt sustainable closed-loop systems for waste reduction and valorization is critical. Using organic waste as a feedstock, gasification and pyrolysis systems can produce biooil, syngas, and thermal energy, while reducing waste mass by as much as 85-95% through conversion into biochar, a valuable byproduct with myriad uses from soil conditioning to bioremediation and carbon sequestration. Here, we present a novel case study detailing the circular economy of gasification biochar in Singapore's Gardens by the Bay. Biochar produced from horticultural waste within the Gardens was tested as a partial peat moss substitute in growing lettuce, pak choi, and pansy, and found to be a viable substitute for peat moss. At low percentages of 20-30% gasification biochar, fresh weight yields for lettuce and pak choi were comparable to or exceeded those of plants grown in pure peat moss. The biochar was also analyzed as a potential additive to concrete, with a 2% biochar mortar compound found to be of suitable strength for non-structural functions, such as sidewalks, ditches, and other civil applications. These results demonstrate the global potential of circular economies based on local biochar creation and on-site use through the valorization of horticultural waste via gasification, generating clean, renewable heat or electricity, and producing a carbon-neutral to -negative byproduct in the form of biochar. They also indicate the potential of scaled-up pyrolysis or gasification systems for a circular economy in waste management.


Subject(s)
Charcoal , Pyrolysis , Singapore , Soil
4.
Sci Total Environ ; 757: 143820, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33248779

ABSTRACT

Biochar, produced as a by-product of pyrolysis/gasification of waste biomass, shows great potential to reduce the environment impact, address the climate change issue, and establish a circular economy model. Despite the promising outlook, the research on the benefits of biochar remains highly debated. This has been attributed to the heterogeneity of biochar itself, with its inherent physical, chemical and biological properties highly influenced by production variables such as feedstock types and treating conditions. Hence, to enable meaningful comparison of results, establishment of an agreed international standard to govern the production of biochar for specific uses is necessary. In this study, we analyzed four key uses of biochar: 1) in agriculture and horticulture, 2) as construction material, 3) as activated carbon, and 4) in anaerobic digestion. Then the guidelines for the properties of biochar, especially for the concentrations of toxic heavy metals, for its environmental friendly application were proposed in the context of Singapore. The international status of the biochar industry code of practice, feedback from Singapore local industry and government agencies, as well as future perspectives for the biochar industry were explained.


Subject(s)
Agriculture , Charcoal , Biomass , Singapore , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...