Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 25(21): 26067-26075, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29041268

ABSTRACT

Generating N single photons simultaneously is a formidable challenge due to the lack of deterministic single photon sources. Recent work [New J. Phys. 19, 063013 (2017] has proposed a relative multiplexing scheme that can enhance the N single photons probability with a minimum of active switching resources. We experimentally demonstrate relative temporal multiplexing on two photon sources with a 90% additional enhancement over the standard temporal multiplexing scheme demonstrated previously. 88 ± 11% visibility of Hong-Ou-Mandel quantum interference verifies the indistinguishability of the heralded single photons after the synchronization. This proof-of-principle demonstration points out the potential significance of the relative multiplexing scheme for large-scale photonic quantum information processing.

2.
Nat Commun ; 7: 10853, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26996317

ABSTRACT

It is a fundamental challenge in quantum optics to deterministically generate indistinguishable single photons through non-deterministic nonlinear optical processes, due to the intrinsic coupling of single- and multi-photon-generation probabilities in these processes. Actively multiplexing photons generated in many temporal modes can decouple these probabilities, but key issues are to minimize resource requirements to allow scalability, and to ensure indistinguishability of the generated photons. Here we demonstrate the multiplexing of photons from four temporal modes solely using fibre-integrated optics and off-the-shelf electronic components. We show a 100% enhancement to the single-photon output probability without introducing additional multi-photon noise. Photon indistinguishability is confirmed by a fourfold Hong-Ou-Mandel quantum interference with a 91 ± 16% visibility after subtracting multi-photon noise due to high pump power. Our demonstration paves the way for scalable multiplexing of many non-deterministic photon sources to a single near-deterministic source, which will be of benefit to future quantum photonic technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...