Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasonics ; 133: 107046, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37247461

ABSTRACT

The application of ultrasound shear wave elastography for detecting chronic kidney disease, namely renal fibrosis, has been widely studied. A good correlation between tissue Young's modulus and the degree of renal impairment has been established. However, the current limitation of this imaging modality pertains to the linear elastic assumption used in quantifying the stiffness of renal tissue in commercial shear wave elastography systems. As such, when underlying medical conditions such as acquired cystic kidney disease, which may potentially influence the viscous component of renal tissue, is present concurrently with renal fibrosis, the accuracy of the imaging modality in detecting chronic kidney disease may be affected. The findings in this study demonstrate that quantifying the stiffness of linear viscoelastic tissue using an approach similar to those implemented in commercial shear wave elastography systems led to percentage errors as high as 87%. The findings presented indicate that use of shear viscosity to detect changes in renal impairment led to a reduction in percentage error to values as low as 0.3%. For cases in which renal tissue was affected by multiple medical conditions, shear viscosity was found to be a good indicator in gauging the reliability of the Young's modulus (quantified through a shear wave dispersion analysis) in detecting chronic kidney disease. The findings show that percentage error in stiffness quantification can be reduced to as low as 0.6%. The present study demonstrates the potential use of renal shear viscosity as a biomarker to improve the detection of chronic kidney disease.


Subject(s)
Elasticity Imaging Techniques , Renal Insufficiency, Chronic , Humans , Elasticity Imaging Techniques/methods , Viscosity , Reproducibility of Results , Finite Element Analysis , Renal Insufficiency, Chronic/diagnostic imaging , Elastic Modulus , Fibrosis , Biomarkers
2.
Ultrasound Med Biol ; 47(8): 2033-2047, 2021 08.
Article in English | MEDLINE | ID: mdl-33958257

ABSTRACT

Early detection of chronic kidney disease is important to prevent progression of irreversible kidney damage, reducing the need for renal transplantation. Shear wave elastography is ideal as a quantitative imaging modality to detect chronic kidney disease because of its non-invasive nature, low cost and portability, making it highly accessible. However, the complexity of the kidney architecture and its tissue properties give rise to various confounding factors that affect the reliability of shear wave elastography in detecting chronic kidney disease, thus limiting its application to clinical trials. The objective of this review is to highlight the confounding factors presented by the complex properties of the kidney, in addition to outlining potential mitigation strategies, along with the prospect of increasing the versatility and reliability of shear wave elastography in detecting chronic kidney disease.


Subject(s)
Elasticity Imaging Techniques , Renal Insufficiency, Chronic/diagnostic imaging , Anisotropy , Elasticity Imaging Techniques/trends , Forecasting , Hemodynamics , Humans , Kidney/blood supply , Kidney/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...