Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5875, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997266

ABSTRACT

Correct regulation of intercellular communication is a fundamental requirement for cell differentiation. In Arabidopsis thaliana, the female germline differentiates from a single somatic ovule cell that becomes encased in ß-1,3-glucan, a water insoluble polysaccharide implicated in limiting pathogen invasion, regulating intercellular trafficking in roots, and promoting pollen development. Whether ß-1,3-glucan facilitates germline isolation and development has remained contentious, since limited evidence is available to support a functional role. Here, transcriptional profiling of adjoining germline and somatic cells revealed differences in gene expression related to ß-1,3-glucan metabolism and signalling through intercellular channels (plasmodesmata). Dominant expression of a ß-1,3-glucanase in the female germline transiently perturbed ß-1,3-glucan deposits, allowed intercellular movement of tracer molecules, and led to changes in germline gene expression and histone marks, eventually leading to termination of germline development. Our findings indicate that germline ß-1,3-glucan fulfils a functional role in the ovule by insulating the primary germline cell, and thereby determines the success of downstream female gametogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gametogenesis, Plant , Gene Expression Regulation, Plant , Ovule , beta-Glucans , Arabidopsis/metabolism , Arabidopsis/genetics , Ovule/metabolism , Ovule/genetics , beta-Glucans/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gametogenesis, Plant/genetics , Plasmodesmata/metabolism , Pollen/metabolism , Pollen/genetics , Pollen/growth & development , Gene Expression Profiling
2.
Methods Mol Biol ; 2686: 261-281, 2023.
Article in English | MEDLINE | ID: mdl-37540362

ABSTRACT

The plant seed is a remarkable structure that represents the single most important energy source in global diets. The stages of reproductive growth preceding seed formation are particularly important since they influence the number, size, and quality of seed produced. The progenitor of the seed is the ovule, a multicellular organ that produces a female gametophyte while maintaining a range of somatic ovule cells to protect the seed and ensure it receives maternal nourishment. Ovule development has been well characterized in Arabidopsis using a range of molecular, genetic, and cytological assays. These can provide insight into the mechanistic basis for ovule development, and opportunities to explore its evolutionary conservation. In this chapter, we describe some of these methods and tools that can be used to investigate early ovule development and cell differentiation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ovule/genetics , Arabidopsis Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Gene Expression Regulation, Plant
3.
Plant Methods ; 16: 88, 2020.
Article in English | MEDLINE | ID: mdl-32549904

ABSTRACT

BACKGROUND: The legume cowpea (Vigna unguiculata L.) is extensively grown in sub-Saharan Africa. Cowpea, like many legumes has proved recalcitrant to plant transformation. A rapid transient leaf assay was developed for testing gene expression and editing constructs prior to stable cowpea transformation, to accelerate cowpea and legume crop improvement. RESULTS: Attempts to develop a transient protoplast system for cowpea were unsuccessful. Leaflets from plants 3-4 weeks post-germination were age selected to establish a rapid Agrobacterium (Agro) infiltration-mediated transient system for efficacy testing of gene expression and CRISPR/Cas9 gene editing constructs. In planta, Agro-infiltration of leaflets with fluorescent expression constructs, resulted in necrosis. By contrast, Agro-infiltration of detached leaflets with an Arabidopsis (At) ubiquitin3 promoter:ZsGreen construct, followed by culture on solid nutrient medium resulted in fluorescence in over 48% of leaf cells. Expression efficiency was leaf age-dependent. Three cowpea meiosis genes were identified for CRISPR/Cas9 gene-editing, with the forward aim of meiosis-knock out for asexual seed induction in cowpea. Constructs were designed and tested containing candidate gene-specific guide RNAs, expressed using either the cowpea or Arabidopsis U6 promoters with Cas9 expression directed by either the Arabidopsis 40S ribosomal protein or parsley ubiquitin4-2 promoters. Leaflets were infiltrated with test gene-editing constructs and analytical methods developed to identify gene-specific mutations. A construct that produced mutations predicted to induce functional knockout of in the VuSPO11-1 meiosis gene was tested for efficacy in primary transgenic cowpea plants using a previously established stable transformation protocol. Vuspo11-1 mutants were identified, that cytologically phenocopied spo11-1 mutants previously characterized in Arabidopsis, and rice. Importantly, a biallelic male and female sterile mutant was identified in primary transgenics, exhibiting the expected defects in 100% of examined male and female meiocytes. CONCLUSION: The transient, detached cowpea leaf assay, and supporting analytical methods developed, provide a rapid and reproducible means for testing gene expression constructs, and constructs for inducing mutagenesis in genes involved in both vegetative and reproductive developmental programs. The method and tested editing constructs and components have potential application for a range of crop legumes.

SELECTION OF CITATIONS
SEARCH DETAIL
...