Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 83(21)2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28842536

ABSTRACT

The model white-rot basidiomycete, Ceriporiopsis (Gelatoporia) subvermispora B, encodes putative natural product biosynthesis genes. Among them is the gene for the seven-domain nonribosomal peptide synthetase CsNPS2. It is a member of the as-yet-uncharacterized fungal type VI siderophore synthetase family, which is highly conserved and widely distributed among the basidiomycetes. These enzymes include only one adenylation (A) domain, i.e., one complete peptide synthetase module, and two thiolation/condensation (T-C) didomain partial modules which together constitute an AT1C1T2C2T3C3 domain setup. The full-length CsNPS2 enzyme (274.5 kDa) was heterologously produced as a polyhistidine fusion in Aspergillus niger as a soluble and active protein. N 5-acetyl-N 5-hydroxy-l-ornithine (l-AHO) and N 5-cis-anhydromevalonyl-N 5 -hydroxy-l-ornithine (l-AMHO) were accepted as the substrates, based on results of an in vitro substrate-dependent [32P]ATP-pyrophosphate radioisotope exchange assay. Full-length holo-CsNPS2 catalyzed amide bond formation between three l-AHO molecules to release the linear l-AHO trimer, called basidioferrin, as the product in vitro, which was verified by liquid chromatography-high-resolution electrospray ionization-mass spectrometry analysis. Phylogenetic analyses suggested that type VI family siderophore synthetases are widespread in mushrooms and evolved in a common ancestor of basidiomycetes.IMPORTANCE The basidiomycete nonribosomal peptide synthetase CsNPS2 represents a member of a widely distributed but previously uninvestigated class (type VI) of fungal siderophore synthetases. Genes orthologous to CsNPS2 are highly conserved across various phylogenetic clades of the basidiomycetes. Hence, our work serves as a broadly applicable model for siderophore biosynthesis and iron metabolism in higher fungi. Also, our results on the amino acid substrate preference of CsNPS2 support a further understanding of the substrate selectivity of fungal adenylation domains. Methodologically, this report highlights the Aspergillus niger/SM-Xpress-based system as a suitable platform to heterologously express multimodular basidiomycete biosynthesis enzymes in the >250-kDa range in soluble and active form.

2.
Bioprocess Biosyst Eng ; 39(5): 845-53, 2016 May.
Article in English | MEDLINE | ID: mdl-26873705

ABSTRACT

A novel stain solving subtilisin-like peptidase (PPP1) was identified from the culture supernatant of the agaricomycete Pleurotus pulmonarius. It was purified to homogeneity using a sequence of preparative isoelectric focusing, anion exchange and size exclusion chromatography. Peptides were identified by ab initio sequencing (nLC-ESI-QTOF-MS/MS), characterizing the enzyme as a member of the subtilase family (EC 3.4.21.X). An expression system was established featuring the pPIC9K vector, an alternative Kozak sequence, the codon optimized gene ppp1 gene without the native signal sequence with C-terminal hexa-histidine tag, and Pichia pastoris GS115 as expression host. Intracellular active enzyme was obtained from cultivations in shake flasks and in a five liter bioreactor. With reaction optima of 40 °C and a pH > 8.5, considerable bleaching of pre-stained fabrics (blood, milk and India ink), and the possibility of larger-scale production, the heterologous enzyme is well suitable for detergent applications, especially at lower temperatures as part of a more energy- and cost-efficient washing process. Showing little sequence similarity to other subtilases, this unique peptidase is the first subtilisin-like peptidase from Basidiomycota, which has been functionally produced in Pichia pastoris.


Subject(s)
Peptide Hydrolases/biosynthesis , Pleurotus/enzymology , Amino Acid Sequence , Bioreactors , Electrophoresis, Polyacrylamide Gel , Genes, Fungal , Peptide Hydrolases/chemistry , Pleurotus/genetics , Sequence Homology, Amino Acid
3.
Bioprocess Biosyst Eng ; 38(6): 1191-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25614450

ABSTRACT

Four extracellular enzymes, a versatile peroxidase, a manganese peroxidase, a dye-decolorizing peroxidase and a lignin peroxidase were discovered in liquid cultures of the basidiomycete Bjerkandera adusta. All of them cleaved ß-carotene effectively. Expression was enhanced in the presence of ß-carotene or Coomassie Brilliant Blue and peaked after 7-9 days. The monomeric proteins were purified by ion exchange and size exclusion chromatography and exhibited molecular masses of 41, 43, 51 and 43 kDa, respectively. The coding sequences showed homologies from 61 to 89 % to peroxidases from other basidiomycetes. The novel enzymes retained strong activity even in the absence of hydrogen peroxide and at alkaline pH. De-staining of fabrics using detergent-tolerant enzymes may help to save the most important bio-resources, energy and water, in washing processes and led to green processes in textile cleaning.


Subject(s)
Basidiomycota/metabolism , Carotenoids/metabolism , Chemical Industry , Detergents/metabolism , Peroxidases/metabolism
4.
Adv Biochem Eng Biotechnol ; 148: 391-404, 2015.
Article in English | MEDLINE | ID: mdl-25326849

ABSTRACT

The continuing interest in the sesquiterpene ketone (+)-nootkatone is stimulated by its strong grapefruit-like odor and numerous further bioactivities. Also numerous were the attempts to chemosynthesize or biotechnologically produce the compound. Cytochrome P450 enzymes from bacteria and fungi were intensively studied and expressed in Escherichia coli and in more food compatible hosts, such as Saccharomyces cerevisiae. The lipoxygenase-catalyzed generation was demonstrated using an enzyme from several Pleurotus species. Laccases required artificial mediators for an efficient catalysis. More recently, plant valencene synthases were expressed in microbial hosts. Combined with an endogenous farnesyl diphosphate delivery pathway and a valencene oxidase, this approach opened access to high yields of nootkatone possessing the appreciated attribute of "natural" according to present food legislation. Little biochemical engineering was carried out on the novel recombinant strains, leaving many options for future improved bioprocesses.


Subject(s)
Sesquiterpenes/chemistry , Catalysis , Cytochrome P-450 Enzyme System/chemistry , Drug Delivery Systems , Escherichia coli/metabolism , Industrial Microbiology/methods , Insecticides/chemistry , Laccase/chemistry , Lipoxygenases/chemistry , Metabolic Engineering/methods , Oxidoreductases/chemistry , Pleurotus/metabolism , Polycyclic Sesquiterpenes , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...