Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Trends Microbiol ; 32(5): 415-418, 2024 May.
Article in English | MEDLINE | ID: mdl-38519354

ABSTRACT

Approaches to rapidly collecting global biodiversity data are increasingly important, but biodiversity blind spots persist. We organized a three-day Datathon event to improve the openness of local biodiversity data and facilitate data reuse by local researchers. The first Datathon, organized among microbial ecologists in Uruguay and Argentina assembled the largest microbiome dataset in the region to date and formed collaborative consortia for microbiome data synthesis.


Subject(s)
Biodiversity , Ecology , Microbiota , Argentina , Uruguay
2.
Environ Microbiol Rep ; 15(5): 352-369, 2023 10.
Article in English | MEDLINE | ID: mdl-37162018

ABSTRACT

Grassland biomes provide valuable ecosystem services, including nutrient cycling. Organic phosphorus (Po) represents more than half of the total P in soils. Soil microorganisms release organic P through enzymatic processes, with alkaline phosphatases, acid phosphatases and phytases being the key P enzymes involved in the cycling of organic P. This study analysed 74 soil metagenomes from 17 different grassland biomes worldwide to evaluate the distribution and abundance of eight key P enzymes (PhoD, PhoX, PhoA, Nsap-A, Nsap-B, Nsap-C, BPP and CPhy) and their relationship with environmental factors. Our analyses showed that alkaline phosphatase phoD was the dataset's most abundant P-enzyme encoding genes, with a wide phylogenetic distribution. Followed by the acid phosphatases Nsap-A and Nsap-C showed similar abundance but a different distribution in their respective phylogenetic trees. Multivariate analyses revealed that pH, Tmax , SOC and soil moisture were associated with the abundance and diversity of all genes studied. PhoD and phoX genes strongly correlated with SOC and clay, and the phoX gene was more common in soils with low to medium SOC and neutral pH. In particular, P-enzyme genes tended to respond in a positively correlated manner among them, suggesting a complex relationship of abundance and diversity among them.


Subject(s)
Phosphorus , Soil , Phylogeny , Soil/chemistry , Ecosystem , Grassland , Alkaline Phosphatase/genetics
4.
FEMS Microbiol Ecol ; 97(3)2021 03 10.
Article in English | MEDLINE | ID: mdl-33547893

ABSTRACT

Conventional tillage and mineral fertilization (CTMF) jeopardize soil health in conventional vegetable production systems. Using a field experiment established in Uruguay in 2012, we aimed to compare the soil restoration potential of organic fertilization (compost and poultry manure) combined with conventional tillage and cover crop incorporated into the soil (CTOF) or with reduced tillage and the use of cover crop as mulch (RTOF). In 2017, table beet was cultivated under CTMF, CTOF and RTOF, and yields, soil aggregate composition and nutrients, as well as soil and table beet rhizosphere microbiota (here: bacteria and archaea) were evaluated. Microbiota was studied by high-throughput sequencing of 16S rRNA gene fragments amplified from total community DNA. RTOF exhibited higher soil aggregation, soil organic C, nutrient availability and microbial alpha-diversity than CTMF, and became more similar to an adjacent natural undisturbed site. The soil microbiota was strongly shaped by the fertilization source which was conveyed to the rhizosphere and resulted in differentially abundant taxa. However, 229 amplicon sequencing variants were found to form the core table beet rhizosphere microbiota shared among managements. In conclusion, our study shows that after only 5 years of implementation, RTOF improves soil health under intensive vegetable farming systems.


Subject(s)
Microbiota , Soil , Agriculture , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Uruguay , Vegetables
5.
Front Plant Sci ; 10: 1544, 2019.
Article in English | MEDLINE | ID: mdl-31850032

ABSTRACT

Worldwide olive industry has expanded into new climatic regions outside the Mediterranean basin due to an increase in extra virgin olive oil demand posing new challenges. This is the case of Uruguay, South America, where the olive crop area reached 10,000 hectares in the last 15 years and is intended to the production of EVOO. Uruguay has a temperate humid climate with mean precipitations above 1,100 mm per year but unequally distributed, mild winters, and warm summers, with mean annual temperatures of 17.7°C. Different agroecological conditions require local knowledge to achieve good productivity whereby the objective of this work was to show the feasibility and potential of olive oil production under our climatic conditions. For this the agronomic performance of Arbequina, Barnea, Frantoio, Leccino, Manzanilla de Sevilla, and Picual cultivars was evaluated along 10 years of full production. Phenology behavior, vegetative growth rate, productive efficiency, alternate bearing, and oil yield were determined. Sprouting and flowering processes occur in a wide window within the annual cycle between the months of August to November with great interannual variation. More than 8 t/ha fruit yield and 40% oil yields in dry weight basis were obtained in promising cultivars. However, alternate bearing arose as the main production limiting factor, with ABI values greater than 0.60 for most cultivars. We conclude that olive oil production in humid climate regions is feasible and the most promising cultivars based on productive efficiency are Arbequina and Picual.

SELECTION OF CITATIONS
SEARCH DETAIL