Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055020

ABSTRACT

The global urgency to uncover medical countermeasures to combat the COVID-19 pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has revealed an unmet need for robust tissue culture models that faithfully recapitulate key features of human tissues and disease. Infection of the nose is considered the dominant initial site for SARS-CoV-2 infection and models that replicate this entry portal offer the greatest potential for examining and demonstrating the effectiveness of countermeasures designed to prevent or manage this highly communicable disease. Here, we test an air-liquid-interface (ALI) differentiated human nasal epithelium (HNE) culture system as a model of authentic SARS-CoV-2 infection. Progenitor cells (basal cells) were isolated from nasal turbinate brushings, expanded under conditionally reprogrammed cell (CRC) culture conditions and differentiated at ALI. Differentiated cells were inoculated with different SARS-CoV-2 clinical isolates. Infectious virus release into apical washes was determined by TCID50, while infected cells were visualized by immunofluorescence and confocal microscopy. We demonstrate robust, reproducible SARS-CoV-2 infection of ALI-HNE established from different donors. Viral entry and release occurred from the apical surface, and infection was primarily observed in ciliated cells. In contrast to the ancestral clinical isolate, the Delta variant caused considerable cell damage. Successful establishment of ALI-HNE is donor dependent. ALI-HNE recapitulate key features of human SARS-CoV-2 infection of the nose and can serve as a pre-clinical model without the need for invasive collection of human respiratory tissue samples.


Subject(s)
COVID-19/virology , Nasal Mucosa/cytology , Nasal Mucosa/virology , Tissue Culture Techniques/methods , Adolescent , Adult , Angiotensin-Converting Enzyme 2/metabolism , Cell Culture Techniques , Cell Differentiation , Epithelial Cells/cytology , Epithelial Cells/virology , Female , Humans , Male , Middle Aged , Models, Biological , SARS-CoV-2 , Virus Internalization
2.
Breast Cancer Res ; 22(1): 86, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32787900

ABSTRACT

BACKGROUND: Tumor-derived extracellular vesicles (tdEVs) and circulating tumor cells (CTCs) in the blood of metastatic cancer patients associate with poor outcomes. In this study, we explored the human epidermal growth factor receptor 2 (HER2) expression on CTCs and tdEVs of metastatic breast cancer patients. METHODS: Blood samples from 98 patients (CLCC-IC-2006-04 study) were originally processed with the CellSearch® system using the CTC kit and anti-HER2 as an additional marker in the staining cocktail. CTCs and tdEVs were automatically enumerated from the generated CellSearch images using the open-source ACCEPT software. RESULTS: CTCs and tdEVs were subdivided based on their cytokeratin (CK) and HER2 phenotype into CK+HER2-, CK-HER2+, and CK+HER2+. The inclusion of anti-HER2 increased the percentage of informative samples with ≥ 1 detectable CTC from 89 to 95%. CK- CTCs and tdEVs correlated equally well with the clinical outcome as CK+ CTCs and tdEVs. Inter- and intra-patient heterogeneity was found for the CTC/tdEV phenotypes, and the presence of 2 or 3 classes of CTCs/tdEVs was associated with worse prognosis compared to a uniform CTC/tdEV phenotype present (1 class). The use of ≥ 7% HER2+CK+ tdEVs can predict HER2 expression of the tissue with 74% sensitivity and specificity using the HER2 amplification status of the primary tumor as a classification variable. CONCLUSIONS: HER2 can be detected on CTCs and tdEVs not expressing CK, and these CK- CTCs/tdEVs have similar clinical relevance to CTCs and tdEVs expressing CK. tdEVs perform better than CTCs in predicting the HER2 status of the primary tissue. CTC and tdEV heterogeneity in the blood of patients is inversely associated with overall survival.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Extracellular Vesicles/metabolism , Neoplastic Cells, Circulating/metabolism , Receptor, ErbB-2/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Extracellular Vesicles/genetics , Female , Humans , Keratins/metabolism , Neoplasm Metastasis , Prognosis , ROC Curve , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...