Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(8): 14847-14859, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859420

ABSTRACT

This article presents an experimental demonstration of a spectroscopic method based on the dispersion of the scattering spectrum from laser-illuminated liquid water collected through a rubidium atomic vapor prism cell. Resonant absorption at 780 nm suppresses Mie/Rayleigh scattering and the steep gradients in refractive index near the 780 nm absorption lines separate Brillouin scattering from Raman scattering in liquid water. The opposing spatial displacements of the Stokes and Anti-Stokes shifted Brillouin peaks yield a measurement of their spectral shifts and thus the temperature or salinity of the water. Performance of the prism cell was mapped with a frequency tunable laser for frequency offsets from the center of the rubidium absorption feature of between -15 GHz and 15 GHz and at rubidium cell temperatures between 148 °C and 177 °C. The experimental results are compared with a numerical model and show good agreement with the scattering peak displacements within experimental uncertainties of probe frequency and cell temperature. In the present configuration, the minimum detectable frequency shift is estimated to be 15.5 MHz. Experiments were conducted in water demonstrating the utility of this method for the measurement of water temperature. Liquid water LiDAR was suggested as one of the possible applications for this method and several ways to improve the experimental setup and cell temperature stability were identified.

2.
Opt Lett ; 49(3): 426-429, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300024

ABSTRACT

This Letter describes, to the best of our knowledge, a new approach to flow tagging, nitric oxide (NO) Ionization Induced Flow Tagging and Imaging (NiiFTI), and presents the first experimental demonstration for single-shot velocimetry in a near Mach 6 hypersonic flow at 250 kHz. The mean velocity of 860 m/s was measured with a single-shot standard deviation of as low as 3.4 m/s and mean velocity uncertainty of 5.5 m/s. NiiFTI is characterized by a long fluorescence lifetime of nitrogen with 1e decay of approximately 50 µs measured in air. The method relies on a single nanosecond laser combined with a high-speed camera, creating an opportunity for the utilization of a typical nitric oxide (NO) laser-induced fluorescence (LIF) experimental setup with minor modifications as well as pulse-burst lasers (PBLs) for ultrahigh repetition rates.

3.
Opt Express ; 31(2): 1764-1775, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785204

ABSTRACT

This work presents the first, to the best of our knowledge, experimental demonstration of slow light imaging spectroscopy for thermometry of liquid water. This novel technique for measuring temperature relies on detecting the spectral shift of Brillouin peaks in water using the temporal delay through a cell containing an atomic vapor. Stand-off sensing capabilities are achieved by time-domain measurements of Brillouin scattering tuned to be near a rubidium atomic resonance and passed through a cell filled with rubidium vapor. An injection seeded optical parametric oscillator (OPO) is demonstrated to be a versatile light source for slow light imaging spectroscopy applications. The narrow OPO pulse spectrum allows for a precise profiling of slow light features of rubidium and accurate tracking of the temperature dependence of Brillouin scattering spectral shift. A comparison between the experimental data and numerical simulation over a temperature range of 20 to 99 degrees Celsius shows a good agreement for both qualitative and quantitative results.

SELECTION OF CITATIONS
SEARCH DETAIL
...