Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687506

ABSTRACT

This article presents a general theory of the ME effect in composites in the low- and high-frequency ranges. Besides the quasi-static region, the area of electromechanical resonance, including longitudinal, bending, longitudinal shear, and torsional modes, is considered in more detail. To demonstrate the theory, expressions of ME voltage coefficients are obtained for symmetric and asymmetric layered structures. A comparison is made with the experimental results for the GaAs/Metglas and LiNbO3/Metglas structures. The main microwave ME effect, consisting of the FMR line shift in an electric field, for the ferromagnetic metals, their alloys, and YIG ferrite using various piezoelectrics is discussed. In addition to analytical calculations, in the article, finite element modeling is considered. The calculation methods and experimental results are compared for some composites.

2.
Sensors (Basel) ; 23(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36850378

ABSTRACT

Many studies of the ME effect have been carried out in the microwave range in connection with the possibility of creating new electronic devices. One of the main microwave ME effects is the FMR line shift in an electric field, and the purpose of this article is to compare the FMR line shift in the ME structure in an electric field for a number of ferromagnetic metals, their alloys, and YIG ferrite using various piezoelectrics. This article discusses the regimes when the bias field is directed along the main axes of the magnetic component, while, as is known, the observed effect is due only to deformation. As a result of the study, ME structures with maximum and minimum microwave ME effects were found. In addition, the "substrate effect" in the piezoelectric YIG-GGG structure is considered.

3.
Sensors (Basel) ; 24(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38203014

ABSTRACT

This article is devoted to the theory of the converse magnetoelectric (CME) effect for the longitudinal, bending, longitudinal-shear, and torsional resonance modes and its quasi-static regime. In contrast to the direct ME effect (DME), these issues have not been studied in sufficient detail in the literature. However, in a number of cases, in particular in the study of low-frequency ME antennas, the results obtained are of interest. Detailed calculations with examples were carried out for the longitudinal mode on the symmetric and asymmetric structures based on Metglas/PZT (LN); the bending mode was considered for the asymmetric free structure and structure with rigidly fixed left-end Metglas/PZT (LN); the longitudinal-shear and torsional modes were investigated for the symmetric and asymmetric free structures based on Metglas/GaAs. For the identification of the torsion mode, it was suggested to perform an experiment on the ME structure based on Metglas/bimorphic LN. All calculation results are presented in the form of graphs for the CME coefficients.

4.
Sensors (Basel) ; 22(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35808313

ABSTRACT

The article discusses the physical foundations of the application of the linear magnetoelectric (ME) effect in composites for devices in the low-frequency range, including the electromechanical resonance (EMR) region. The main theoretical expressions for the ME voltage coefficients in the case of a symmetric and asymmetric composite structure in the quasi-static and resonant modes are given. The area of EMR considered here includes longitudinal, bending, longitudinal shear, and torsional modes. Explanations are given for finding the main resonant frequencies of the modes under study. Comparison of theory and experimental results for some composites is given.

5.
Sensors (Basel) ; 21(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34577439

ABSTRACT

One of the new materials that have recently attracted wide attention of researchers are magnetoelectric (ME) composites. Great interest in these materials is due to their properties associated with the transformation of electric polarization/magnetization under the influence of external magnetic/electric fields and the possibility of their use to create new devices. In the proposed review, ME magnetic field sensors based on the widely used structures Terfenol-PZT/PMN-PT, Metglas-PZT/PMN-PT, and Metglas-Lithium niobate, among others, are considered as the first applications of the ME effect in technology. Estimates of the parameters of ME sensors are given, and comparative characteristics of magnetic field sensors are presented. Taking into account the high sensitivity of ME magnetic field sensors, comparable to superconducting quantum interference devices (SQUIDs), we discuss the areas of their application.

6.
Sensors (Basel) ; 20(24)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322153

ABSTRACT

The article is devoted to the theoretical and experimental study of a magnetoelectric (ME) current sensor based on a gradient structure. It is known that the use of gradient structures in magnetostrictive-piezoelectric composites makes it possible to create a self-biased structure by replacing an external magnetic field with an internal one, which significantly reduces the weight, power consumption and dimensions of the device. Current sensors based on a gradient bidomain structure LiNbO3 (LN)/Ni/Metglas with the following layer thicknesses: lithium niobate-500 µm, nickel-10 µm, Metglas-29 µm, operate on a linear section of the working characteristic and do not require the bias magnetic field. The main characteristics of a contactless ME current sensor: its current range measures up to 10 A, it has a sensitivity of 0.9 V/A, its current consumption is not more than 2.5 mA, and its linearity is maintained to an accuracy of 99.8%. Some additional advantages of a bidomain lithium niobate-based current sensor are the increased sensitivity of the device due to the use of the bending mode in the electromechanical resonance region and the absence of a lead component in the device.

7.
Sensors (Basel) ; 20(19)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992763

ABSTRACT

The paper is devoted to the possibility of using magnetoelectric materials for the production of a crankshaft position sensor for automobiles. The composite structure, consisting of a PZT or LiNbO3 piezoelectric with a size of 20 mm × 5 mm × 0.5 mm, and plates of the magnetostrictive material Metglas of the appropriate size were used as a sensitive element. The layered structure was made from a bidomain lithium niobate monocrystal with a Y + 128° cut and amorphous metal of Metglas. Various combinations of composite structures are also investigated; for example, asymmetric structures using a layer of copper and aluminum. The output characteristics of these structures are compared in the resonant and non-resonant modes. It is shown that the value of the magnetoelectric resonant voltage coefficient was 784 V/(cm·Oe), and the low-frequency non-resonant magnetoelectric coefficient for the magnetoelectric element was about 3 V/(cm·Oe). The principle of operation of the position sensor and the possibility of integration into automotive systems, using the CAN bus, are examined in detail. To obtain reliable experimental results, a special stand was assembled on the basis of the SKAD-1 installation. The studies showed good results and a high prospect for the use of magnetoelectric sensors as position sensors and, in particular, of a vehicle's crankshaft position sensor.

8.
Sensors (Basel) ; 17(6)2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28574486

ABSTRACT

In this work a magnetoelectric (ME) current sensor design based on a magnetoelectric effect is presented and discussed. The resonant and non-resonant type of ME current sensors are considered. Theoretical calculations of the ME current sensors by the equivalent circuit method were conducted. The application of different sensors using the new effects, for example, the ME effect, is made possible with the development of new ME composites. A large number of studies conducted in the field of new composites, allowed us to obtain a high magnetostrictive-piezoelectric laminate sensitivity. An optimal ME structure composition was matched. The characterization of a non-resonant current sensor showed that in the operation range to 5 A, the sensor had a sensitivity of 0.34 V/A, non-linearity less than 1% and for a resonant current sensor in the same operation range, the sensitivity was of 0.53 V/A, non-linearity less than 0.5%.

SELECTION OF CITATIONS
SEARCH DETAIL
...