Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(12)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38137997

ABSTRACT

This work investigated the antimicrobial potential of Lysobacter gummosus 10.1.1. The culture fluid of the strain was found to contain antimicrobial agents active against Staphylococcus aureus, Micrococcus luteus, and Bacillus cereus. L. gummosus was first shown to be capable of forming outer membrane vesicles, which have a bacteriolytic effect against not only Gram-positive bacteria but also against the Gram-negative pathogen Pseudomonas aeruginosa. Transcriptomic analysis revealed the genes of almost all known bacteriolytic enzymes of Lysobacter, as well as the genes of enzymes with putative bacteriolytic activity. Also identified were genes involved in the biosynthesis of a number of secondary metabolites for which antimicrobial activities are known. This research is indicative of the relevance of isolating and studying L. gummosus antimicrobial agents.

2.
Microbiol Resour Announc ; 11(9): e0048422, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35920672

ABSTRACT

Lysobacter capsici VKM B-2533T and Lysobacter gummosus 10.1.1 are promising strains for use in biomedicine as sources of new antimicrobial agents. Here, we report the whole-genome sequences of both strains (total lengths, 6,239,188 bp and 6,056,609 bp, respectively), obtained using the Illumina and Nanopore platforms.

3.
Int J Mol Sci ; 23(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35628535

ABSTRACT

A successful homologous expression system based on Lysobacter capsici VKM B-2533T and the plasmid pBBR1-MCS5 was first developed for a promising bacteriolytic enzyme of this bacterium, ß-lytic protease (Blp). In the expression strains, blp gene expression under the regulation of the GroEL(A) and T5 promoters increased by 247- and 667-fold, respectively, as compared with the wild-type strain. After the cultivation of the expression strains L. capsici PGroEL(A)-blp and L. capsici PT5-blp, the Blp yield increased by 6.7- and 8.5-fold, respectively, with respect to the wild-type strain. The cultivation of the expression strain L. capsici PT5-blp was successfully scaled up. Under fermentation conditions the yield of the enzyme increased by 1.6-fold. The developed homologous system was used to express the gene of the bacteriolytic serine protease (Serp) of L. capsici VKM B-2533T. The expression of the serp gene in L. capsici PT5-serp increased by 585-fold. The developed homologous system for the gene expression of bacteriolytic Lysobacter enzymes is potentially biotechnologically valuable, and is promising for creating highly efficient expression strains.


Subject(s)
Anti-Infective Agents , Lysobacter , Bacteriolysis , Lysobacter/genetics , Serine Proteases/genetics
4.
Front Microbiol ; 12: 715802, 2021.
Article in English | MEDLINE | ID: mdl-34484157

ABSTRACT

Outer membrane vesicles (OMVs) produced by Gram-negative bacteria constitute important factors in defining interactions with the extracellular milieu. Lysobacter sp. XL1 produces OMVs capable of lysing microbial cells due to the presence in their cargo of bacteriolytic protease L5 (AlpB). Although protein L5 has been functionally and biochemically characterized (including aspects of its packing into OMVs), its role in vesicle biogenesis through genetic deletion of alpB had not been studied previously. Here, we have successfully deleted alpB by allelic replacement and show that the alpB deletion mutant produces a significantly lower amount of OMVs that lack bacteriolytic activity and display altered ultrastructural characteristics in relation to the OMVs produced by the wild-type strain. These results confirm that, as previously proposed, protein L5 participates in OMV production through a mechanism that is not yet fully understood.

SELECTION OF CITATIONS
SEARCH DETAIL
...