Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 6(2)2021 04 07.
Article in English | MEDLINE | ID: mdl-33827913

ABSTRACT

Current sequencing-based methods for profiling microbial communities rely on marker gene (e.g., 16S rRNA) or metagenome shotgun sequencing (mWGS) analysis. We present an approach based on a single-primer extension reaction using a highly multiplexed oligonucleotide probe pool. This approach, termed MA-GenTA (microbial abundances from genome tagged analysis), enables quantitative, straightforward, cost-effective microbiome profiling that combines desirable features of both 16S rRNA and mWGS strategies. The use of multiple probes per target genome and rigorous probe design criteria enabled robust determination of relative abundance. To test the utility of the MA-GenTA assay, probes were designed for 830 genome sequences representing bacteria present in mouse stool specimens. Comparison of the MA-GenTA data with mWGS data demonstrated excellent correlation down to 0.01% relative abundance and a similar number of organisms detected per sample. Despite the incompleteness of the reference database, nonmetric multidimensional scaling (NMDS) clustering based on the Bray-Curtis dissimilarity metric of sample groups was consistent between MA-GenTA, mWGS, and 16S rRNA data sets. MA-GenTA represents a potentially useful new method for microbiome community profiling based on reference genomes.IMPORTANCE New methods for profiling the microbial communities can create new approaches to understanding the composition and function of those communities. In this study, we combined bacterial genome-specific probe design with a highly multiplexed single primer extension reaction as a new method to profile microbial communities, using stool from various mouse strains as a test case. This method, termed MA-GenTA, was benchmarked against 16S rRNA gene sequencing and metagenome sequencing methods and delivered similar relative abundance and clustering data. Since the probes were generated from reference genomes, MA-GenTA was also able to provide functional pathway data for the stool microbiome in the assayed samples. The method is more informative than 16S rRNA analysis while being less costly than metagenome shotgun sequencing.


Subject(s)
Bacteria/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing/methods , Metagenome , Microbiota/genetics , Animals , DNA, Bacterial/genetics , Feces/microbiology , Gene Expression Profiling/economics , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/economics , Mice , Mice, Inbred C57BL , Phylogeny , Sequence Analysis, DNA
2.
Nature ; 569(7758): 663-671, 2019 05.
Article in English | MEDLINE | ID: mdl-31142858

ABSTRACT

Type 2 diabetes mellitus (T2D) is a growing health problem, but little is known about its early disease stages, its effects on biological processes or the transition to clinical T2D. To understand the earliest stages of T2D better, we obtained samples from 106 healthy individuals and individuals with prediabetes over approximately four years and performed deep profiling of transcriptomes, metabolomes, cytokines, and proteomes, as well as changes in the microbiome. This rich longitudinal data set revealed many insights: first, healthy profiles are distinct among individuals while displaying diverse patterns of intra- and/or inter-personal variability. Second, extensive host and microbial changes occur during respiratory viral infections and immunization, and immunization triggers potentially protective responses that are distinct from responses to respiratory viral infections. Moreover, during respiratory viral infections, insulin-resistant participants respond differently than insulin-sensitive participants. Third, global co-association analyses among the thousands of profiled molecules reveal specific host-microbe interactions that differ between insulin-resistant and insulin-sensitive individuals. Last, we identified early personal molecular signatures in one individual that preceded the onset of T2D, including the inflammation markers interleukin-1 receptor agonist (IL-1RA) and high-sensitivity C-reactive protein (CRP) paired with xenobiotic-induced immune signalling. Our study reveals insights into pathways and responses that differ between glucose-dysregulated and healthy individuals during health and disease and provides an open-access data resource to enable further research into healthy, prediabetic and T2D states.


Subject(s)
Biomarkers/metabolism , Computational Biology , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome , Host Microbial Interactions/genetics , Prediabetic State/microbiology , Proteome/metabolism , Transcriptome , Adult , Aged , Anti-Bacterial Agents/administration & dosage , Biomarkers/analysis , Cohort Studies , Datasets as Topic , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Glucose/metabolism , Healthy Volunteers , Humans , Inflammation/metabolism , Influenza Vaccines/immunology , Insulin/metabolism , Insulin Resistance , Longitudinal Studies , Male , Microbiota/physiology , Middle Aged , Prediabetic State/genetics , Prediabetic State/metabolism , Respiratory Tract Infections/genetics , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Stress, Physiological , Vaccination/statistics & numerical data
3.
PLoS One ; 6(7): e22751, 2011.
Article in English | MEDLINE | ID: mdl-21799941

ABSTRACT

An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM™ sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM™ within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak.


Subject(s)
Disease Outbreaks , Enterohemorrhagic Escherichia coli/genetics , Enterohemorrhagic Escherichia coli/pathogenicity , Escherichia coli Infections/epidemiology , Genomics/methods , Sequence Analysis, DNA/methods , Adult , Evolution, Molecular , Germany/epidemiology , Humans , Phylogeny , Prospective Studies , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...