Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Circulation ; 149(22): 1729-1748, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38487879

ABSTRACT

BACKGROUND: Myocardial infarction (MI) and heart failure are associated with an increased incidence of cancer. However, the mechanism is complex and unclear. Here, we aimed to test our hypothesis that cardiac small extracellular vesicles (sEVs), particularly cardiac mesenchymal stromal cell-derived sEVs (cMSC-sEVs), contribute to the link between post-MI left ventricular dysfunction (LVD) and cancer. METHODS: We purified and characterized sEVs from post-MI hearts and cultured cMSCs. Then, we analyzed cMSC-EV cargo and proneoplastic effects on several lines of cancer cells, macrophages, and endothelial cells. Next, we modeled heterotopic and orthotopic lung and breast cancer tumors in mice with post-MI LVD. We transferred cMSC-sEVs to assess sEV biodistribution and its effect on tumor growth. Finally, we tested the effects of sEV depletion and spironolactone treatment on cMSC-EV release and tumor growth. RESULTS: Post-MI hearts, particularly cMSCs, produced more sEVs with proneoplastic cargo than nonfailing hearts did. Proteomic analysis revealed unique protein profiles and higher quantities of tumor-promoting cytokines, proteins, and microRNAs in cMSC-sEVs from post-MI hearts. The proneoplastic effects of cMSC-sEVs varied with different types of cancer, with lung and colon cancers being more affected than melanoma and breast cancer cell lines. Post-MI cMSC-sEVs also activated resting macrophages into proangiogenic and protumorigenic states in vitro. At 28-day follow-up, mice with post-MI LVD developed larger heterotopic and orthotopic lung tumors than did sham-MI mice. Adoptive transfer of cMSC-sEVs from post-MI hearts accelerated the growth of heterotopic and orthotopic lung tumors, and biodistribution analysis revealed accumulating cMSC-sEVs in tumor cells along with accelerated tumor cell proliferation. sEV depletion reduced the tumor-promoting effects of MI, and adoptive transfer of cMSC-sEVs from post-MI hearts partially restored these effects. Finally, spironolactone treatment reduced the number of cMSC-sEVs and suppressed tumor growth during post-MI LVD. CONCLUSIONS: Cardiac sEVs, specifically cMSC-sEVs from post-MI hearts, carry multiple protumorigenic factors. Uptake of cMSC-sEVs by cancer cells accelerates tumor growth. Treatment with spironolactone significantly reduces accelerated tumor growth after MI. Our results provide new insight into the mechanism connecting post-MI LVD to cancer and propose a translational option to mitigate this deadly association.


Subject(s)
Extracellular Vesicles , Heart Failure , Myocardial Infarction , Animals , Extracellular Vesicles/metabolism , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/etiology , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Mice , Humans , Female , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Cell Line, Tumor , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Male , Cell Proliferation/drug effects
2.
Sci Rep ; 13(1): 4481, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36934130

ABSTRACT

Inflammation and fibrosis limit the reparative properties of human mesenchymal stromal cells (hMSCs). We hypothesized that disrupting the toll-like receptor 4 (TLR4) gene would switch hMSCs toward a reparative phenotype and improve the outcome of cell therapy for infarct repair. We developed and optimized an improved electroporation protocol for CRISPR-Cas9 gene editing. This protocol achieved a 68% success rate when applied to isolated hMSCs from the heart and epicardial fat of patients with ischemic heart disease. While cell editing lowered TLR4 expression in hMSCs, it did not affect classical markers of hMSCs, proliferation, and migration rate. Protein mass spectrometry analysis revealed that edited cells secreted fewer proteins involved in inflammation. Analysis of biological processes revealed that TLR4 editing reduced processes linked to inflammation and extracellular organization. Furthermore, edited cells expressed less NF-ƙB and secreted lower amounts of extracellular vesicles and pro-inflammatory and pro-fibrotic cytokines than unedited hMSCs. Cell therapy with both edited and unedited hMSCs improved survival, left ventricular remodeling, and cardiac function after myocardial infarction (MI) in mice. Postmortem histologic analysis revealed clusters of edited cells that survived in the scar tissue 28 days after MI. Morphometric analysis showed that implantation of edited cells increased the area of myocardial islands in the scar tissue, reduced the occurrence of transmural scar, increased scar thickness, and decreased expansion index. We show, for the first time, that CRISPR-Cas9-based disruption of the TLR4-gene reduces pro-inflammatory polarization of hMSCs and improves infarct healing and remodeling in mice. Our results provide a new approach to improving the outcomes of cell therapy for cardiovascular diseases.


Subject(s)
Myocardial Infarction , Toll-Like Receptor 4 , Humans , Mice , Animals , Toll-Like Receptor 4/genetics , Cicatrix/pathology , CRISPR-Cas Systems/genetics , Cells, Cultured , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Myocardial Infarction/pathology , Pericardium/pathology , Cell- and Tissue-Based Therapy , Inflammation/pathology
3.
Basic Res Cardiol ; 117(1): 51, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36239866

ABSTRACT

Understanding how macrophages promote myocardial repair can help create new therapies for infarct repair. We aimed to determine what mechanisms underlie the reparative properties of macrophages. Cytokine arrays revealed that neonatal cardiac macrophages from the injured neonatal heart secreted high amounts of osteopontin (OPN). In vitro, recombinant OPN stimulated cardiac cell outgrowth, cardiomyocyte (CM) cell-cycle re-entry, and CM migration. In addition, OPN induced nuclear translocation of the cytoplasmatic yes-associated protein 1 (YAP1) and upregulated transcriptional factors and cell-cycle genes. Significantly, by blocking the OPN receptor CD44, we eliminated the effects of OPN on CMs. OPN also activated the proliferation and migration of non-CM cells: endothelial cells and cardiac mesenchymal stromal cells in vitro. Notably, the significant role of OPN in myocardial healing was demonstrated by impaired healing in OPN-deficient neonatal hearts. Finally, in the adult mice, a single injection of OPN into the border of the ischemic zone induced CM cell-cycle re-entry, improved scar formation, local and global cardiac function, and LV remodelling 30 days after MI. In summary, we have shown, for the first time, that recombinant OPN activates cell-cycle re-entry in CMs. In addition, recombinant OPN stimulates multiple cardiac cells and improves scar formation, LV remodelling, and regional and global function after MI. Therefore, we propose OPN as a new cell-free therapy to optimize infarct repair.


Subject(s)
Myocardial Infarction , Osteopontin , Animals , Cicatrix/metabolism , Cicatrix/pathology , Endothelial Cells/metabolism , Mice , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Osteopontin/genetics , Osteopontin/metabolism , Osteopontin/pharmacology , YAP-Signaling Proteins
4.
J Clin Invest ; 132(10)2022 05 16.
Article in English | MEDLINE | ID: mdl-35316214

ABSTRACT

Pregnancy is associated with substantial physiological changes of the heart, and disruptions in these processes can lead to peripartum cardiomyopathy (PPCM). The molecular processes that cause physiological and pathological changes in the heart during pregnancy are not well characterized. Here, we show that mTORc1 was activated in pregnancy to facilitate cardiac enlargement that was reversed after delivery in mice. mTORc1 activation in pregnancy was negatively regulated by the mRNA-destabilizing protein ZFP36L2 through its degradation of Mdm2 mRNA and P53 stabilization, leading to increased SESN2 and REDD1 expression. This pathway impeded uncontrolled cardiomyocyte hypertrophy during pregnancy, and mice with cardiac-specific Zfp36l2 deletion developed rapid cardiac dysfunction after delivery, while prenatal treatment of these mice with rapamycin improved postpartum cardiac function. Collectively, these data provide what we believe to be a novel pathway for the regulation of mTORc1 through mRNA stabilization of a P53 ubiquitin ligase. This pathway was critical for normal cardiac growth during pregnancy, and its reduction led to PPCM-like adverse remodeling in mice.


Subject(s)
Cardiomyopathies , Mechanistic Target of Rapamycin Complex 1 , Nuclear Proteins , Pregnancy Complications, Cardiovascular , Transcription Factors , Tumor Suppressor Protein p53 , Animals , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Female , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Peripartum Period , Peroxidases/genetics , Peroxidases/metabolism , Pregnancy , Pregnancy Complications, Cardiovascular/metabolism , Pregnancy Complications, Cardiovascular/therapy , RNA, Messenger/metabolism , Transcription Factors/metabolism , Tristetraprolin/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
6.
Sci Rep ; 11(1): 17489, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471180

ABSTRACT

Rapid and sensitive screening tools for SARS-CoV-2 infection are essential to limit the spread of COVID-19 and to properly allocate national resources. Here, we developed a new point-of-care, non-contact thermal imaging tool to detect COVID-19, based on advanced image processing algorithms. We captured thermal images of the backs of individuals with and without COVID-19 using a portable thermal camera that connects directly to smartphones. Our novel image processing algorithms automatically extracted multiple texture and shape features of the thermal images and achieved an area under the curve (AUC) of 0.85 in COVID-19 detection with up to 92% sensitivity. Thermal imaging scores were inversely correlated with clinical variables associated with COVID-19 disease progression. In summary, we show, for the first time, that a hand-held thermal imaging device can be used to detect COVID-19. Non-invasive thermal imaging could be used to screen for COVID-19 in out-of-hospital settings, especially in low-income regions with limited imaging resources.


Subject(s)
COVID-19/diagnostic imaging , Image Processing, Computer-Assisted/instrumentation , Adult , Aged , Algorithms , Area Under Curve , Disease Progression , Female , Humans , Male , Middle Aged , Point-of-Care Systems , Sensitivity and Specificity , Smartphone
7.
Circulation ; 143(25): 2475-2493, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33793321

ABSTRACT

BACKGROUND: The role of epicardial fat (eFat)-derived extracellular vesicles (EVs) in the pathogenesis of atrial fibrillation (AF) has never been studied. We tested the hypothesis that eFat-EVs transmit proinflammatory, profibrotic, and proarrhythmic molecules that induce atrial myopathy and fibrillation. METHODS: We collected eFat specimens from patients with (n=32) and without AF (n=30) during elective heart surgery. eFat samples were grown as organ cultures, and the culture medium was collected every 2 days. We then isolated and purified eFat-EVs from the culture medium, and analyzed the EV number, size, morphology, specific markers, encapsulated cytokines, proteome, and microRNAs. Next, we evaluated the biological effects of unpurified and purified EVs on atrial mesenchymal stromal cells and endothelial cells in vitro. To establish a causal association between eFat-EVs and vulnerability to AF, we modeled AF in vitro using induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Microscopic examination revealed excessive inflammation, fibrosis, and apoptosis in fresh and cultured eFat tissues. Cultured explants from patients with AF secreted more EVs and harbored greater amounts of proinflammatory and profibrotic cytokines, and profibrotic microRNA, as well, than those without AF. The proteomic analysis confirmed the distinctive profile of purified eFat-EVs from patients with AF. In vitro, purified and unpurified eFat-EVs from patients with AF had a greater effect on proliferation and migration of human mesenchymal stromal cells and endothelial cells, compared with eFat-EVs from patients without AF. Last, whereas eFat-EVs from patients with and without AF shortened the action potential duration of induced pluripotent stem cell-derived cardiomyocytes, only eFat-EVs from patients with AF induced sustained reentry (rotor) in induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: We show, for the first time, a distinctive proinflammatory, profibrotic, and proarrhythmic signature of eFat-EVs from patients with AF. Our findings uncover another pathway by which eFat promotes the development of atrial myopathy and fibrillation.


Subject(s)
Adipose Tissue/pathology , Atrial Fibrillation/etiology , Atrial Fibrillation/pathology , Extracellular Vesicles/pathology , Myocytes, Cardiac/pathology , Pericardium/pathology , Adipose Tissue/metabolism , Aged , Aged, 80 and over , Animals , Atrial Fibrillation/metabolism , Cells, Cultured , Extracellular Vesicles/metabolism , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Male , Middle Aged , Myocytes, Cardiac/metabolism , Organ Culture Techniques , Pericardium/metabolism , Proteomics/methods , Rats
8.
J Mol Cell Cardiol ; 155: 125-137, 2021 06.
Article in English | MEDLINE | ID: mdl-33130150

ABSTRACT

AIMS: One unaddressed aspect of healing after myocardial infarction (MI) is how non-myocyte cells that survived the ischemic injury, keep withstanding additional cellular damage by stress forms typically arising during the post-infarction inflammation. Here we aimed to determine if cell survival is conferred by expression of a mitochondrial protein novel to the cardiac proteome, known as steroidogenic acute regulatory protein, (StAR/STARD1). Further studies aimed to unravel the regulation and role of the non-steroidogenic cardiac StAR after MI. METHODS AND RESULTS: Following permanent ligation of the left anterior descending coronary artery in mouse heart, timeline western blot analyses showed that StAR expression corresponds to the inflammatory response to MI. Following the identification of StAR in mitochondria of cardiac fibroblasts in culture, confocal microscopy immunohistochemistry (IHC) identified StAR expression in left ventricular (LV) activated interstitial fibroblasts, adventitial fibroblasts and endothelial cells. Further work with the primary fibroblasts model revealed that interleukin-1α (IL-1α) signaling via NF-κB and p38 MAPK pathways efficiently upregulates the expression of the Star gene products. At the functional level, IL-1α primed fibroblasts were protected against apoptosis when exposed to cisplatin mimicry of in vivo apoptotic stress; yet, the protective impact of IL-1α was lost upon siRNA mediated StAR downregulation. At the physiological level, StAR expression was nullified during post-MI inflammation in a mouse model with global IL-1α deficiency, concomitantly resulting in a 4-fold elevation of apoptotic fibroblasts. Serial echocardiography and IHC studies of mice examined 24 days after MI revealed aggravation of LV dysfunction, LV dilatation, anterior wall thinning and adverse tissue remodeling when compared with loxP control hearts. CONCLUSIONS: This study calls attention to overlooked aspects of cellular responses evolved under the stress conditions associated with the default inflammatory response to MI. Our observations suggest that LV IL-1α is cardioprotective, and at least one mechanism of this action is mediated by induction of StAR expression in border zone fibroblasts, which renders them apoptosis resistant. This acquired survival feature also has long-term ramifications on the heart recovery by diminishing adverse remodeling and improving the heart function after MI.


Subject(s)
Fibroblasts/metabolism , Gene Expression Regulation , Interleukin-1alpha/metabolism , Myocardial Infarction/etiology , Myocardial Infarction/metabolism , Phosphoproteins/genetics , Ventricular Remodeling/genetics , Animals , Apoptosis/genetics , Biomarkers , Cells, Cultured , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Female , Fluorescent Antibody Technique , Interleukin-1alpha/genetics , Male , Mice , Mice, Knockout , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Phosphoproteins/metabolism , Signal Transduction
9.
Sci Rep ; 10(1): 15532, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968123

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of progressive liver pathologies, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. A liver biopsy is currently required to stratify high-risk patients, and predicting the degree of liver inflammation and fibrosis using non-invasive tests remains challenging. Here, we sought to develop a novel, cost-effective screening tool for NAFLD based on thermal imaging. We used a commercially available and non-invasive thermal camera and developed a new image processing algorithm to automatically predict disease status in a small animal model of fatty liver disease. To induce liver steatosis and inflammation, we fed C57/black female mice (8 weeks old) a methionine-choline deficient diet (MCD diet) for 6 weeks. We evaluated structural and functional liver changes by serial ultrasound studies, histopathological analysis, blood tests for liver enzymes and lipids, and measured liver inflammatory cell infiltration by flow cytometry. We developed an image processing algorithm that measures relative spatial thermal variation across the skin covering the liver. Thermal parameters including temperature variance, homogeneity levels and other textural features were fed as input to a t-SNE dimensionality reduction algorithm followed by k-means clustering. During weeks 3,4, and 5 of the experiment, our algorithm demonstrated a 100% detection rate and classified all mice correctly according to their disease status. Direct thermal imaging of the liver confirmed the presence of changes in surface thermography in diseased livers. We conclude that non-invasive thermal imaging combined with advanced image processing and machine learning-based analysis successfully correlates surface thermography with liver steatosis and inflammation in mice. Future development of this screening tool may improve our ability to study, diagnose and treat liver disease.


Subject(s)
Fatty Liver/diagnostic imaging , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Thermography/methods , Algorithms , Animals , Automation/methods , Choline/administration & dosage , Choline Deficiency/metabolism , Diet/methods , Disease Models, Animal , Fatty Liver/diagnosis , Female , Humans , Image Processing, Computer-Assisted/methods , Liver/diagnostic imaging , Methionine/administration & dosage , Methionine/deficiency , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/diagnosis , Ultrasonography
10.
NMR Biomed ; 33(9): e4359, 2020 09.
Article in English | MEDLINE | ID: mdl-32648316

ABSTRACT

BACKGROUND: In vivo imaging of oxidative stress can facilitate the understanding and treatment of cardiovascular diseases. We evaluated nitroxide-enhanced MRI with 3-carbamoyl-proxyl (3CP) for the detection of myocardial oxidative stress. METHODS: Three mouse models of cardiac oxidative stress were imaged, namely angiotensin II (Ang II) infusion, myocardial infarction (MI), and high-fat high-sucrose (HFHS) diet-induced obesity (DIO). For the Ang II model, mice underwent MRI at baseline and after 7 days of Ang II (n = 8) or saline infusion (n = 8). For the MI model, mice underwent MRI at baseline (n = 10) and at 1 (n = 8), 4 (n = 9), and 21 (n = 8) days after MI. For the HFHS-DIO model, mice underwent MRI at baseline (n = 20) and 18 weeks (n = 13) after diet initiation. The 3CP reduction rate, Kred , computed using a tracer kinetic model, was used as a metric of oxidative stress. Dihydroethidium (DHE) staining of tissue sections was performed on Day 1 after MI. RESULTS: For the Ang II model, Kred was higher after 7 days of Ang II versus other groups (p < 0.05). For the MI model, Kred , in the infarct region was significantly elevated on Days 1 and 4 after MI (p < 0.05), whereas Kred in the noninfarcted region did not change after MI. DHE confirmed elevated oxidative stress in the infarct zone on Day 1 after MI. After 18 weeks of HFHS diet, Kred was higher in mice after diet versus baseline (p < 0.05). CONCLUSIONS: Nitroxide-enhanced MRI noninvasively quantifies tissue oxidative stress as one component of a multiparametric preclinical MRI examination. These methods may facilitate investigations of oxidative stress in cardiovascular disease and related therapies.


Subject(s)
Cardiovascular System/diagnostic imaging , Cardiovascular System/pathology , Magnetic Resonance Imaging , Nitrogen Oxides/chemistry , Oxidative Stress , Adenosine , Angiotensin II , Animals , Cyclic N-Oxides/chemistry , Diet, High-Fat , Dietary Sucrose , Disease Models, Animal , Male , Mice, Inbred C57BL , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Obesity/diagnostic imaging , Obesity/pathology , Perfusion , Pyrrolidines/chemistry
11.
Biomed Opt Express ; 10(12): 6189-6203, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31853394

ABSTRACT

Thermal infrared imaging has been suggested as a non-invasive alternative to monitor physiological processes and disease. However, the use of this technique to image internal organs, such as the heart, has not yet been investigated. We sought to determine the ability of our novel thermal image-processing algorithm to detect structural and functional changes in a mouse model of hypertension and cardiac remodeling. Twelve mice were randomly assigned to receive either the pro-inflammatory, hypertensive hormone angiotensin-II (2 mg/kg/day, n = 6) or saline (n = 6) infusion for 28 days. We performed weekly blood pressure measurements, together with serial trans-thoracic echocardiography studies and histopathological evaluation of the hearts. Thermal images were captured with a commercially available thermal camera, and images were processed by our novel algorithm which analyzes relative spatial temperature variation across the animal's thorax. We assessed cardiac inflammation by measuring inflammatory cell infiltration through flow cytometry. Angiotensin infusion increased blood pressure together with cardiac hypertrophy and fibrosis. Thermal imaging at day 28 of the experiment detected an increase in the fraction of the skin heated by the heart in angiotensin-treated mice. Thermal image findings were significantly correlated to left ventricular volume and mass parameters seen on echocardiography (r = 0.8, p < 0.01 and r = 0.6, p = 0.07). We also identified distinct changes in the spatial heat profiles of all angiotensin-treated hearts, possibly reflecting remodeling processes in the hypertensive heart. Finally, a machine learning based model using thermal imaging parameters predicted intervention status in 10 out of 11 mice similar to a model using echocardiographic measurements. Our findings suggest, for the first time, that a new thermal image-processing algorithm successfully correlates surface thermography with cardiac structural changes in mice with hypertensive heart disease.

13.
Cardiovasc Res ; 115(3): 488-500, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30657875

ABSTRACT

Morbidity and mortality from ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and are increasing worldwide. Patients with IHD or HF might benefit from novel therapeutic strategies, such as cell-based therapies. We recently discussed the therapeutic potential of cell-based therapies and provided recommendations on how to improve the therapeutic translation of these novel strategies for effective cardiac regeneration and repair. Despite major advances in optimizing these strategies with respect to cell source and delivery method, the clinical outcome of cell-based therapy remains unsatisfactory. Major obstacles are the low engraftment and survival rate of transplanted cells in the harmful microenvironment of the host tissue, and the paucity or even lack of endogenous cells with repair capacity. Therefore, new ways of delivering cells and their derivatives are required in order to empower cell-based cardiac repair and regeneration in patients with IHD or HF. Strategies using tissue engineering (TE) combine cells with matrix materials to enhance cell retention or cell delivery in the transplanted area, and have recently received much attention for this purpose. Here, we summarize knowledge on novel approaches emerging from the TE scenario. In particular, we will discuss how combinations of cell/bio-materials (e.g. hydrogels, cell sheets, prefabricated matrices, microspheres, and injectable matrices) combinations might enhance cell retention or cell delivery in the transplantation areas, thereby increase the success rate of cell therapies for IHD and HF. We will not focus on the use of classical engineering approaches, employing fully synthetic materials, because of their unsatisfactory material properties which render them not clinically applicable. The overall aim of this Position Paper from the ESC Working Group Cellular Biology of the Heart is to provide recommendations on how to proceed in research with these novel TE strategies combined with cell-based therapies to boost cardiac repair in the clinical settings of IHD and HF.


Subject(s)
Biomedical Research/standards , Cardiology/standards , Heart Failure/surgery , Myocardial Ischemia/surgery , Myocardium/pathology , Regeneration , Stem Cell Transplantation/standards , Tissue Engineering/standards , Consensus , Heart Failure/pathology , Heart Failure/physiopathology , Humans , Myocardial Ischemia/pathology , Myocardial Ischemia/physiopathology , Recovery of Function , Stem Cell Transplantation/adverse effects , Treatment Outcome
15.
J Control Release ; 288: 136-147, 2018 10 28.
Article in English | MEDLINE | ID: mdl-30165141

ABSTRACT

Endothelial activation with up-regulation of E-selectin adhesion molecules mediates leukocyte rolling along the vascular wall and controls inflammation in many diseases including atherosclerosis and heart failure. Therefore, we aimed to test the hypothesis that inhibition of E-selectin-mediated interactions by a new E-selectin-targeted copolymer could inhibit the progression of atherosclerosis. To target E-selectin on activated endothelium, we developed a new N-(2-hydroxypropyl)methacrylamide (HPMA)-based E-selectin binding copolymer with or without dexamethasone (Dex) (designated P-(Esbp)-Dex and P-Esbp, respectively). To determine the effect of P-(Esbp)-Dex and P-Esbp on atherosclerosis, we allocated ApoE (-/-) mice on a high fat diet, to weekly intra-peritoneal injections of either 1) P-Esbp; 2) P-(Esbp)-Dex; 3) free Dex (1 mg/kg) or 4) saline, for four weeks. Aortic atherosclerosis and left ventricular (LV) remodeling and function were assessed by serial ultrasound studies and histology. Monocytes and macrophages were characterized by flow cytometry. After four weeks of treatment, P-Esbp effectively targeted aortic atherosclerotic lesions. Both P-Esbp and P-(Esbp)-Dex reduced wall thickening of the ascending aortas. However, only the drug-free copolymer (P-Esbp) significantly decreased the areas of necrotic core in the plaques and switched spleen macrophages toward an anti-inflammatory (M2) phenotype. Furthermore, P-Esbp attenuated adverse LV remodeling and dysfunction in ApoE (-/-) mice. In summary, P-Esbp copolymer targets activated endothelial cells, regresses and stabilizes atherosclerotic plaques, and prevents adverse LV remodeling and dysfunction in ApoE (-/-) mice. Our results suggest a new, drug-free macromolecular therapy to treat vascular inflammation.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Atherosclerosis/drug therapy , E-Selectin/antagonists & inhibitors , Methacrylates/administration & dosage , Ventricular Dysfunction, Left/drug therapy , Ventricular Remodeling/drug effects , Animals , Aorta/drug effects , Aorta/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Dexamethasone/administration & dosage , E-Selectin/metabolism , Macrophages/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Monocytes/drug effects , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology
16.
J Cardiovasc Pharmacol Ther ; 23(4): 358-371, 2018 07.
Article in English | MEDLINE | ID: mdl-29627992

ABSTRACT

The effectiveness of empagliflozin (EMPA), a sodium glucose cotransporter type 2 inhibitor, on the kidney, pancreas, and heart was investigated in the Cohen Rosenthal diabetic hypertensive rat model (CRDH rat). Six-week-old CRDH male rats were fed a sugar diet (SD) and treated with the compound EMPA (group Drug/SD) or respective comparator with vehicle (group Veh/SD). A control group was fed a regular diet without treatment (group Veh/P). Preventive treatment with EMPA was measured during 4 months of follow-up. The treatment effect was evaluated according to results observed after 4 months in group Drug/SD when compared to those in group Veh/SD. Significant effect resulted in the following parameters: enhancement of urinary glucose excretion in association with diuresis; amelioration of postprandial hyperglycemia and fasting blood glucose levels; and decrease in calculated Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) as well as lower systolic and diastolic blood pressures. At the end of treatment, EMPA preserved nephrin integrity in the kidney, reduced proteinuria, and prevented diabetes-induced damage to glomerular diaphragm structure. In the pancreas, EMPA demonstrated an impressive decrease in fatty infiltration and atrophy. Blood pressure was significantly reduced in the EMPA-treated group (15 ± 5.1 mm Hg, P < .05) in contrast to the vehicle and control groups. Finally, compared to controls, EMPA significantly reduced left ventricle (LV) mass and LV systolic dilatation, according to 2-dimensional echocardiography. The importance of the study lies in demonstrating the efficacy of an antidiabetic drug with beneficial effects on blood pressure, weight, kidney, and pancreas and a positive effect on the heart.


Subject(s)
Benzhydryl Compounds/pharmacology , Blood Glucose/drug effects , Blood Pressure/drug effects , Diabetes Mellitus/drug therapy , Glucosides/pharmacology , Hypertension/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Animals , Biomarkers/blood , Blood Glucose/metabolism , Diabetes Mellitus/blood , Diabetes Mellitus/pathology , Diabetes Mellitus/physiopathology , Disease Models, Animal , Homeostasis , Hypertension/blood , Hypertension/pathology , Hypertension/physiopathology , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/prevention & control , Insulin Resistance , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Male , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Proteinuria/blood , Proteinuria/physiopathology , Proteinuria/prevention & control , Rats, Inbred SHR , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/prevention & control
17.
Sci Rep ; 8(1): 66, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311597

ABSTRACT

Idiopathic dilated cardiomyopathy (DCM) is a complex disorder with a genetic and an environmental component involving multiple genes, many of which are yet to be discovered. We integrate genetic, epigenetic, transcriptomic, phenotypic, and evolutionary features into a method - Hridaya, to infer putative functional genes underlying DCM in a genome-wide fashion, using 213 human heart genomes and transcriptomes. Many genes identified by Hridaya are experimentally shown to cause cardiac complications. We validate the top predicted genes, via five different genome-wide analyses: First, the predicted genes are associated with cardiovascular functions. Second, their knockdowns in mice induce cardiac abnormalities. Third, their inhibition by drugs cause cardiac side effects in human. Fourth, they tend to have differential exon usage between DCM and normal samples. Fifth, analyzing 213 individual genotypes, we show that regulatory polymorphisms of the predicted genes are associated with elevated risk of cardiomyopathy. The stratification of DCM patients based on cardiac expression of the functional genes reveals two subgroups differing in key cardiac phenotypes. Integrating predicted functional genes with cardiomyocyte drug treatment experiments reveals novel potential drug targets. We provide a list of investigational drugs that target the newly identified functional genes that may lead to cardiac side effects.


Subject(s)
Cardiomyopathy, Dilated/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Animals , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/physiopathology , Computational Biology/methods , Epigenomics/methods , Exons , Gene Expression Regulation , Genetic Association Studies/methods , Genome-Wide Association Study , Genomics/methods , Heart Function Tests , Humans , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Polymorphism, Single Nucleotide , Reproducibility of Results , Support Vector Machine
18.
Cardiovasc Res ; 114(1): 19-34, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29106545

ABSTRACT

Extracellular vesicles (EVs)-particularly exosomes and microvesicles (MVs)-are attracting considerable interest in the cardiovascular field as the wide range of their functions is recognized. These capabilities include transporting regulatory molecules including different RNA species, lipids, and proteins through the extracellular space including blood and delivering these cargos to recipient cells to modify cellular activity. EVs powerfully stimulate angiogenesis, and can protect the heart against myocardial infarction. They also appear to mediate some of the paracrine effects of cells, and have therefore been proposed as a potential alternative to cell-based regenerative therapies. Moreover, EVs of different sources may be useful biomarkers of cardiovascular disease identities. However, the methods used for the detection and isolation of EVs have several limitations and vary widely between studies, leading to uncertainties regarding the exact population of EVs studied and how to interpret the data. The number of publications in the exosome and MV field has been increasing exponentially in recent years and, therefore, in this ESC Working Group Position Paper, the overall objective is to provide a set of recommendations for the analysis and translational application of EVs focussing on the diagnosis and therapy of the ischaemic heart. This should help to ensure that the data from emerging studies are robust and repeatable, and optimize the pathway towards the diagnostic and therapeutic use of EVs in clinical studies for patient benefit.


Subject(s)
Cardiology/methods , Cell Fractionation/methods , Cell- and Tissue-Based Therapy/methods , Cell-Derived Microparticles/metabolism , Cell-Derived Microparticles/transplantation , Diagnostic Techniques, Cardiovascular , Exosomes/metabolism , Exosomes/transplantation , Myocardial Ischemia/diagnosis , Myocardial Ischemia/therapy , Animals , Biomarkers/metabolism , Cardiology/standards , Cell Fractionation/standards , Cell- and Tissue-Based Therapy/standards , Cell-Derived Microparticles/pathology , Consensus , Diagnostic Techniques, Cardiovascular/standards , Exosomes/pathology , Humans , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Predictive Value of Tests
20.
Cardiovasc Res ; 113(7): 725-736, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28460026

ABSTRACT

Despite advances in myocardial reperfusion therapies, acute myocardial ischaemia/reperfusion injury and consequent ischaemic heart failure represent the number one cause of morbidity and mortality in industrialized societies. Although different therapeutic interventions have been shown beneficial in preclinical settings, an effective cardioprotective or regenerative therapy has yet to be successfully introduced in the clinical arena. Given the complex pathophysiology of the ischaemic heart, large scale, unbiased, global approaches capable of identifying multiple branches of the signalling networks activated in the ischaemic/reperfused heart might be more successful in the search for novel diagnostic or therapeutic targets. High-throughput techniques allow high-resolution, genome-wide investigation of genetic variants, epigenetic modifications, and associated gene expression profiles. Platforms such as proteomics and metabolomics (not described here in detail) also offer simultaneous readouts of hundreds of proteins and metabolites. Isolated omics analyses usually provide Big Data requiring large data storage, advanced computational resources and complex bioinformatics tools. The possibility of integrating different omics approaches gives new hope to better understand the molecular circuitry activated by myocardial ischaemia, putting it in the context of the human 'diseasome'. Since modifications of cardiac gene expression have been consistently linked to pathophysiology of the ischaemic heart, the integration of epigenomic and transcriptomic data seems a promising approach to identify crucial disease networks. Thus, the scope of this Position Paper will be to highlight potentials and limitations of these approaches, and to provide recommendations to optimize the search for novel diagnostic or therapeutic targets for acute ischaemia/reperfusion injury and ischaemic heart failure in the post-genomic era.


Subject(s)
Cardiology/standards , Epigenesis, Genetic , Epigenomics/standards , Gene Expression Profiling/standards , Myocardial Ischemia/genetics , Precision Medicine/standards , Transcriptome , Computational Biology/standards , Databases, Genetic/standards , Genetic Markers , Genetic Predisposition to Disease , Humans , Myocardial Ischemia/diagnosis , Myocardial Ischemia/therapy , Patient Selection , Phenotype , Predictive Value of Tests , Prognosis , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...