Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 21(1): 689, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33023467

ABSTRACT

BACKGROUND: MiRNAs play essential roles in plant development and response to biotic and abiotic stresses through interaction with their target genes. The expression level of miRNAs shows great variations among different plant accessions, developmental stages, and tissues. Little is known about the content within the plant genome contributing to the variations in plants. This study aims to identify miRNA expression-related quantitative trait loci (miR-QTLs) in the maize genome. RESULTS: The miRNA expression level from next generation sequencing (NGS) small RNA libraries derived from mature leaf samples of the maize panel (200 maize lines) was estimated as phenotypes, and maize Hapmap v3.2.1 was chosen as the genotype for the genome-wide association study (GWAS). A total of four significant miR-eQTLs were identified contributing to miR156k-5p, miR159a-3p, miR390a-5p and miR396e-5p, and all of them are trans-eQTLs. In addition, a strong positive coexpression of miRNA was found among five miRNA families. Investigation of the effects of these miRNAs on the expression levels and target genes provided evidence that miRNAs control the expression of their targets by suppression and enhancement. CONCLUSIONS: These identified significant miR-eQTLs contribute to the diversity of miRNA expression in the maize penal at the developmental stages of mature leaves in maize, and the positive and negative regulation between miRNA and its target genes has also been uncovered.


Subject(s)
MicroRNAs/genetics , Quantitative Trait Loci , Zea mays/genetics , Gene Expression Regulation, Plant , Genome-Wide Association Study/methods , MicroRNAs/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism
2.
Nature ; 555(7697): 520-523, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29539638

ABSTRACT

Here we report a multi-tissue gene expression resource that represents the genotypic and phenotypic diversity of modern inbred maize, and includes transcriptomes in an average of 255 lines in seven tissues. We mapped expression quantitative trait loci and characterized the contribution of rare genetic variants to extremes in gene expression. Some of the new mutations that arise in the maize genome can be deleterious; although selection acts to keep deleterious variants rare, their complete removal is impeded by genetic linkage to favourable loci and by finite population size. Modern maize breeders have systematically reduced the effects of this constant mutational pressure through artificial selection and self-fertilization, which have exposed rare recessive variants in elite inbred lines. However, the ongoing effect of these rare alleles on modern inbred maize is unknown. By analysing this gene expression resource and exploiting the extreme diversity and rapid linkage disequilibrium decay of maize, we characterize the effect of rare alleles and evolutionary history on the regulation of expression. Rare alleles are associated with the dysregulation of expression, and we correlate this dysregulation to seed-weight fitness. We find enrichment of ancestral rare variants among expression quantitative trait loci mapped in modern inbred lines, which suggests that historic bottlenecks have shaped regulation. Our results suggest that one path for further genetic improvement in agricultural species lies in purging the rare deleterious variants that have been associated with crop fitness.


Subject(s)
Alleles , Gene Expression Regulation, Plant/genetics , Genetic Fitness/genetics , Zea mays/genetics , Crops, Agricultural/genetics , Genetic Variation/genetics , Genome, Plant/genetics , Genotype , Linkage Disequilibrium , Phenotype , Population Density , Quantitative Trait Loci/genetics , RNA, Plant/genetics , Seeds/genetics , Sequence Analysis, RNA
3.
Science ; 325(5941): 714-8, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19661422

ABSTRACT

Flowering time is a complex trait that controls adaptation of plants to their local environment in the outcrossing species Zea mays (maize). We dissected variation for flowering time with a set of 5000 recombinant inbred lines (maize Nested Association Mapping population, NAM). Nearly a million plants were assayed in eight environments but showed no evidence for any single large-effect quantitative trait loci (QTLs). Instead, we identified evidence for numerous small-effect QTLs shared among families; however, allelic effects differ across founder lines. We identified no individual QTLs at which allelic effects are determined by geographic origin or large effects for epistasis or environmental interactions. Thus, a simple additive model accurately predicts flowering time for maize, in contrast to the genetic architecture observed in the selfing plant species rice and Arabidopsis.


Subject(s)
Flowers/genetics , Quantitative Trait Loci , Zea mays/genetics , Alleles , Chromosome Mapping , Chromosomes, Plant/genetics , Epistasis, Genetic , Flowers/growth & development , Gene Frequency , Genes, Plant , Genetic Variation , Geography , Inbreeding , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Recombination, Genetic , Time Factors , Zea mays/growth & development , Zea mays/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...