Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 84: 189-195, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30291982

ABSTRACT

Organophosphorus pesticides (OPs) are broad-spectrum insecticides. One of the commonly used OPs is diazinon (DZN). The aim of this study was to evaluate the immunotoxic effect of DZN on phagocytic parameters of blood leukocytes using the teleost fish Oreochromis niloticus as a study model. For this purpose, fish were exposed in vivo to 0.97, 1.95 and 3.97 mg/L of DZN for 6 and 24 h. Our results indicated that phagocytic active cells decreased in fish exposed in vivo to 0.97 and 1.95 mg/L of DZN for 6 and 24 h. Regarding ROS production, H2O2 and O2- levels were higher on fish exposed to 1.95 mg/L for 6 and 24 h, while H2O2 production increased at 0.97 mg/L for 24 h. From this we can conclude that phagocytic parameters are sensitive to assess the effect of acute intoxication with organophosphorus pesticides on Nile tilapia.


Subject(s)
Cichlids/physiology , Diazinon/adverse effects , Insecticides/adverse effects , Leukocytes/drug effects , Phagocytosis/drug effects , Reactive Oxygen Species/metabolism , Respiratory Burst/drug effects , Animals , Biomarkers/blood , Cichlids/immunology , Leukocytes/physiology , Male , Water Pollutants, Chemical/adverse effects
2.
J Appl Toxicol ; 24(6): 519-25, 2004.
Article in English | MEDLINE | ID: mdl-15558828

ABSTRACT

Toxic effects of several nitro-aryl drugs are attributed to the nitro-reduction that may be suffered in vivo, a reaction that may be catalysed by different reductases. One of these enzymes is NADPH-cytochrome P450 reductase, which belongs to the cytochrome P450 oxidative system mainly localized in the endoplasmic reticulum of the hepatic cell. This system is responsible for the biotransformation of oxidative lipophilic compounds, so that oxidative and reductive metabolic pathways of lipophilic nitro-aryl drugs can take place simultaneously. Because of the affinity of nitro-aryl drugs (xenobiotics) for the endoplasmic reticulum, we propose this subcellular organelle as a good biological system for investigating the toxicity induced by the biotransformation of these or another compounds. In this work we used rat liver microsomes to assess the oxidative stress induced by nitro-aryl drug biotransformation. Incubation of microsomes of rat liver with nifurtimox and nitrofurantoin in the presence of NADPH induced lipoperoxidation, UDP-glucuronyltransferase activation and an increase in the basal microsomal oxygen consumption. Nitro-aryl-1,4-dihydropyridines did not elicit these prooxidant effects; furthermore, they inhibited lipoperoxidation and oxygen consumption induced by Fe3+/ascorbate. Nifurtimox and nitrofurantoin modified the maximum absorption of cytochrome P450 oxidase and inhibited p-nitroanisole O-demethylation, an oxidative reaction catalysed by the cytochrome P450 system, signifying that oxidation may proceed in a similar way to that described for nitro-aryl-1,4-dihydropyridines. Thus the balance between lipophilic nitro-aryl drug oxidation and reduction may be involved in the potential oxidative stress induced by biotransformation.


Subject(s)
Anti-Infective Agents, Urinary/toxicity , NADPH-Ferrihemoprotein Reductase/pharmacology , Nifurtimox/toxicity , Nitrofurantoin/toxicity , Oxidative Stress , Animals , Biotransformation , Catalysis , Lipid Peroxidation , Male , Microsomes, Liver , Oxygen Consumption , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL