Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurotrauma ; 38(19): 2731-2746, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34130484

ABSTRACT

Human neural stem cells (hNSCs) have potential as a cell therapy after traumatic brain injury (TBI). While various studies have demonstrated the efficacy of NSCs from ongoing culture, there is a significant gap in our understanding of freshly thawed cells from cryobanked stocks-a more clinically relevant source. To address these shortfalls, the therapeutic potential of our previously validated Shef-6.0 human embryonic stem cell (hESC)-derived hNSC line was tested after long-term cryostorage and thawing before transplant. Immunodeficient athymic nude rats received a moderate unilateral controlled cortical impact (CCI) injury. At four weeks post-injury, 6 × 105 freshly thawed hNSCs were transplanted into six injection sites (two ipsi- and four contra-lateral) with 53.4% of cells surviving three months post-transplant. Interestingly, most hNSCs were engrafted in the meninges and the lining of lateral ventricles, associated with high CXCR4 expression and a chemotactic response to SDF1alpha (CXCL12). While some expressed markers of neuron, astrocyte, and oligodendrocyte lineages, the majority remained progenitors, identified through doublecortin expression (78.1%). Importantly, transplantation resulted in improved spatial learning and memory in Morris water maze navigation and reduced risk taking in an elevated plus maze. Investigating potential mechanisms of action, we identified an increase in ipsilateral host hippocampus cornu ammonis (CA) neuron survival, contralateral dentate gyrus (DG) volume, and DG neural progenitor morphology as well as a reduction in neuroinflammation. Together, these findings validate the potential of hNSCs to improve function after TBI and demonstrate that long-term biobanking of cells and thawing aliquots before use may be suitable for clinical deployment.


Subject(s)
Brain Injuries, Traumatic/psychology , Brain Injuries, Traumatic/therapy , Brain Injury, Chronic/psychology , Brain Injury, Chronic/therapy , Cognition/physiology , Neural Stem Cells/transplantation , Animals , Biological Specimen Banks , Cryopreservation , Disease Models, Animal , Humans , Male , Neurogenesis , Rats , Rats, Nude , Stem Cell Niche , Stem Cell Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...