Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-37632199

ABSTRACT

A link between the T3SS and inhibition of swimming motility by the transcriptional regulator TtsI in Mesorhizobium japonicum MAFF303099 has been previously reported. Here, we show that mutants in T3SS components display impaired biofilm formation capacity, indicating that a functional T3SS, or at least pili formation, is required for this process. As a first approach to the cdiG regulation network in this bacterium, we started a study of the second messenger cdiG by overexpressing or by deleting some genes encoding cdiG metabolizing enzymes. Overexpression of two putative PDEs as well as deletion of various DGCs led to reduced biofilm formation on glass tubes. Mutation of dgc9509 also affected negatively the nodulation and symbiosis efficiency on Lotus plants, which can be related to the observed reduction in adhesion to plant roots. Results from transcriptional nopX- and ttsI-promoter-lacZ fusions suggested that cdiG negatively regulates T3SS expression in M. japonicum MAFF303099.


Subject(s)
Mesorhizobium , Symbiosis , Mesorhizobium/genetics , Cell Membrane , Biofilms
2.
Microb Biotechnol ; 14(5): 1897-1917, 2021 09.
Article in English | MEDLINE | ID: mdl-34318611

ABSTRACT

The specific interaction between rhizobia and legume roots leads to the development of a highly regulated process called nodulation, by which the atmospheric nitrogen is converted into an assimilable plant nutrient. This capacity is the basis for the use of bacterial inoculants for field crop cultivation. Legume plants have acquired tools that allow the entry of compatible bacteria. Likewise, plants can impose sanctions against the maintenance of nodules occupied by rhizobia with low nitrogen-fixing capacity. At the same time, bacteria must overcome different obstacles posed first by the environment and then by the legume. The present review describes the mechanisms involved in the regulation of the entire legume-rhizobium symbiotic process and the strategies and tools of bacteria for reaching the nitrogen-fixing state inside the nodule. Also, we revised different approaches to improve the nodulation process for a better crop yield.


Subject(s)
Fabaceae , Rhizobium , Agriculture , Nitrogen Fixation , Symbiosis , Vegetables
4.
Environ Microbiol Rep ; 13(4): 464-469, 2021 08.
Article in English | MEDLINE | ID: mdl-33331105

ABSTRACT

The in vitro growth of Bradyrhizobium diazoefficiens USDA 110 strain is inhibited by glyphosate. The herbicide affects 5-enolpyruvylshikimic acid-3-phosphate synthase, a key enzyme for aromatic aminoacid synthesis. In this study, site-directed mutagenesis was used to change only two nucleotides of the coding region of phosphoenolpyruvate binding site. This change improved the in vitro growth of B. diazoefficiens USDA 110 in the presence of glyphosate, without affecting its normal growth in the absence of the herbicide. Plant co-inoculation experiments demonstrated a better competitiveness of the glyphosate-resistant strain for soybean nodulation in the presence of glyphosate.


Subject(s)
Glycine max , Bradyrhizobium , Glycine/analogs & derivatives , Mutagenesis, Site-Directed , Glycine max/microbiology , United States , United States Department of Agriculture , Glyphosate
5.
Front Plant Sci ; 9: 1686, 2018.
Article in English | MEDLINE | ID: mdl-30515183

ABSTRACT

Mesorhizobium loti MAFF303099 is a rhizobial strain that nodulates Lotus spp. A M. loti MAFF303099 mutant strain affected in the tatC gene was generated. This strain presented an altered protein secretion level to the culture supernatant and also a higher sensitivity to SDS. Its nodulation phenotype on Lotus showed the induction of small and colorless nodules, and in a larger number than those induced by the wild-type strain. In addition, these nodules presented defects in the degree of occupation by rhizobia. Two Rieske Fe/S proteins, encoded by the mll2707 and mlr0970 genes, were predicted as potential Tat substrates in M. loti MAFF303099. The transcriptional expression of mll2707 and mlr0970 genes was analyzed under different oxygen growth conditions. The mll2707 gene was expressed constitutively, while the expression of the mlr0970 gene was only detected under anaerobic and microaerophilic in vitro conditions. Both genes were down-regulated in the tatC mutant strain. mll2707 and mlr0970 mRNAs from the wild-type strain were detected in nodules. Using a translational reporter peptide fusion, we found that the Mll2707 protein was only detectable in the wild-type strain. On the other hand, although Mlr0970 protein was detected in wild-type and tatC mutant strains, its association with the membrane was favored in the wild-type strain. The tatC and the mll2707 mutant strains were affected in the cytochrome c oxidase activity. These results confirm that Mll2707 is required for cytochrome c-dependent respiration and that Tat functionality is required for the correct activity of Mll2707. The mll2707 mutant strain showed a nodulation phenotype similar to the tatC mutant strain, although it presented only a slight difference in comparison with wild-type strain in terms of nodule occupation. No defective phenotype was observed in the nodulation with the mlr0970 mutant strain. These results indicate that, of the two Rieske Fe/S proteins coded by M. loti MAFF303099, only Mll2707 expression is required for the induction of effective nodules, and that the functionality of the Tat system is necessary not only for the correct function of this protein, but also for some other protein required in an earlier stage of the nodulation process.

6.
FEMS Microbiol Lett ; 363(19)2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27664056

ABSTRACT

Mesorhizobium loti MAFF303099 has a functional Type III secretion system (T3SS) that is involved in the determination of competitiveness for legume nodulation. Here we demonstrate that the transcriptional factor TtsI, which positively regulates T3SS genes expression, is involved in a negative regulation of M. loti swimming motility in soft-agar. Conditions that induce T3SS expression affect flagella production. The same conditions also affect promoter activity of M. loti visN gene, a homolog to the positive regulator of flagellar genes that has been described in other rhizobia. Defects in T3SS complex assembly at membranes limited the negative regulation of motility by the expression of TtsI.

7.
Front Plant Sci ; 6: 12, 2015.
Article in English | MEDLINE | ID: mdl-25688250

ABSTRACT

Mesorhizobium loti MAFF303099 has a functional type III secretion system (T3SS) that is involved in the determination of nodulation competitiveness on Lotus. The M. loti T3SS cluster contains gene y4yS (mlr8765) that codes for a protein of unknown function (Y4yS). A mutation in the y4yS gene favors the M. loti symbiotic competitive ability on Lotus tenuis cv. Esmeralda and affects negatively the secretion of proteins through T3SS. Here we localize Y4yS in the bacterial membrane using a translational reporter peptide fusion. In silico analysis indicated that this protein presents a tetratricopeptide repeat (TPR) domain, a signal peptide and a canonical lipobox LGCC in the N-terminal sequence. These features that are shared with proteins required for the formation of the secretin complex in type IV secretion systems and in the Tad system, together with its localization, suggest that the y4yS-encoded protein is required for the formation of the M. loti T3SS secretin (RhcC2) complex. Remarkably, analysis of RhcC2 in the wild-type and M. loti y4yS mutant strains indicated that the absence of Y4yS affects negatively the accumulation of normal levels of RhcC2 in the membrane.

8.
FEMS Microbiol Lett ; 330(2): 148-56, 2012 May.
Article in English | MEDLINE | ID: mdl-22428564

ABSTRACT

Mesorhizobium loti MAFF303099 has a functional type III secretory system (T3SS) involved in the nodulation process on Lotus tenuis and Lotus japonicus. Four putative M. loti T3SS effectors (Mlr6358, Mlr6331, Mlr6361, and Mlr6316) have been previously described, and it has been demonstrated that the N-terminal regions of Mlr6361 and Mlr6358 mediate the secretion via a T3SS. Here, we demonstrate the capacity of Mlr6316 and Mlr6331 N-terminal regions to direct the secretion of a translational fusion to a reporter peptide through T3SS. By using single, double, and triple mutants, we demonstrated the positive and negative participation of some of these proteins in the determination of competitiveness on Lotus spp. Low competitiveness values correlated with low nodulation efficiency for a mutant deficient in three of the putative M. loti effectors. Our data suggest that the net effect of M. loti T3SS function on symbiotic process with Lotus results from a balance between positive and negative effects.


Subject(s)
Bacterial Secretion Systems , Lotus/microbiology , Mesorhizobium/enzymology , Mesorhizobium/physiology , Genes, Reporter , Plant Root Nodulation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
9.
J Gen Appl Microbiol ; 56(4): 331-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20953097

ABSTRACT

Ethylene inhibits the establishment of symbiosis between rhizobia and legumes. Several rhizobia species express the enzyme ACC deaminase, which degrades the ethylene precursor 1-cyclopropane-1-carboxilate (ACC), leading to reductions in the amount of ethylene evolved by the plant. M. loti has a gene encoding ACC deaminase, but this gene is under the activity of the NifA-RpoN-dependent promoter; thus, it is only expressed inside the nodule. The M. loti structural gene ACC deaminase (acdS) was integrated into the M. loti chromosome under a constitutive promoter activity. The resulting strain induced the formation of a higher number of nodules and was more competitive than the wild-type strain on Lotus japonicus and L. tenuis. These results suggest that the introduction of the ACC deaminase activity within M. loti in a constitutive way could be a novel strategy to increase nodulation competitiveness of the bacteria, which could be useful for the forage inoculants industry.


Subject(s)
Alphaproteobacteria/enzymology , Carbon-Carbon Lyases/genetics , Lotus/microbiology , Symbiosis , Plant Roots/microbiology
10.
Mol Plant Microbe Interact ; 22(5): 519-28, 2009 May.
Article in English | MEDLINE | ID: mdl-19348570

ABSTRACT

Type III secretion systems (T3SS) have been found in several species of rhizobia. Proteins (termed effectors) secreted by this system are involved in host-range determination and influence nodulation efficiency. Mesorhizobium loti MAFF303099 possesses a functional T3SS in its symbiotic island whose expression is induced by flavonoids. As in other rhizobia, conserved cis-elements (tts box) were found in the promoter regions of genes or operons encoding T3SS components. Using a bioinformatics approach, we searched for other tts-box-controlled genes, and confirmed this transcriptional regulation for some of them using lacZ fusions to the predicted promoter regions. Translational fusions to a reporter peptide were created to demonstrate T3SS-mediated secretion of two new MAFF303099 effectors. Finally, we showed that mutation of the M. loti MAFF303099 T3SS affects its competitiveness on Lotus glaber and investigated, at the molecular level, responses of the model legume L. japonicus to the T3SS.


Subject(s)
Alphaproteobacteria/genetics , Bacterial Proteins/genetics , Root Nodules, Plant/genetics , Symbiosis/genetics , Alphaproteobacteria/metabolism , Alphaproteobacteria/physiology , Bacterial Proteins/analysis , Bacterial Proteins/metabolism , Computational Biology/methods , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Lotus/genetics , Lotus/growth & development , Lotus/microbiology , Mass Spectrometry , Mutation , Reverse Transcriptase Polymerase Chain Reaction , Root Nodules, Plant/growth & development , Root Nodules, Plant/microbiology
11.
Mol Plant Microbe Interact ; 21(1): 50-60, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18052882

ABSTRACT

cDNA array technology was used to compare transcriptome profiles of Lotus japonicus roots inoculated with a Mesorhizobium loti wild-type and two mutant strains affected in cyclic beta(1-2) glucan synthesis (cgs) and in lipopolysaccharide synthesis (lpsbeta2). Expression of genes associated with the development of a fully functional nodule was significantly affected in plants inoculated with the cgs mutant. Array results also revealed that induction of marker genes for nodule development was delayed when plants were inoculated with the lpsbeta2 mutant. Quantitative real-time reverse-transcriptase polymerase chain reaction was used to quantify gene expression of a subset of genes involved in plant defense response, redox metabolism, or genes that encode for nodulins. The majority of the genes analyzed in this study were more highly expressed in roots inoculated with the wild type compared with those inoculated with the cgs mutant strain. Some of the genes exhibited a transient increase in transcript levels during intermediate steps of normal nodule development while others displayed induced expression during the final steps of nodule development. Ineffective nodules induced by the glucan mutant showed higher expression of phenylalanine ammonia lyase than wild-type nodules. Differences in expression pattern of genes involved in early recognition and signaling were observed in plants inoculated with the M. loti mutant strain affected in the synthesis of cyclic glucan.


Subject(s)
Fabaceae/genetics , Gene Expression Regulation, Plant , Lipopolysaccharides/biosynthesis , Rhizobium/metabolism , Root Nodules, Plant/growth & development , Root Nodules, Plant/genetics , beta-Glucans/metabolism , Fabaceae/cytology , Fabaceae/microbiology , Gene Expression Profiling , Genes, Plant , Kinetics , Membrane Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Phenols/metabolism , Plant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Root Nodules, Plant/cytology , Root Nodules, Plant/microbiology
12.
Mol Plant Microbe Interact ; 18(5): 446-57, 2005 May.
Article in English | MEDLINE | ID: mdl-15915643

ABSTRACT

The role of Mesorhizobium loti surface polysaccharides on the nodulation process is not yet fully understood. In this article, we describe the nodulation phenotype of mutants affected in the synthesis of lipopolysaccharide (LPS) and beta(1,2) cyclic glucan. M. loti lpsbeta2 mutant produces LPS with reduced amount of O-antigen, whereas M. loti lpsbeta1 mutant produces LPS totally devoid of O-antigen. Both genes are clustered in the chromosome. Based on amino acid sequence homology, LPS sugar composition, and enzymatic activity, we concluded that lpsbeta2 codes for an enzyme involved in the transformation of dTDP-glucose into dTDP-rhamnose, the sugar donor of rhamnose for the synthesis of O-antigen. On the other hand, lpsbeta1 codes for a glucosyltransferase involved in the biosynthesis of the O-antigen. Although LPS mutants elicited normal nodules, both show reduced competitiveness compared with the wild type. M. loti beta(1-2) cyclic glucan synthase (cgs) mutant induces white, empty, ineffective pseudonodules in Lotus tenuis. Cgs mutant induces normal root hair curling but is unable to induce the formation of infection threads. M. loti cgs mutant was more sensitive to deoxycholate and displayed motility impairment compared with the wild-type strain. This pleiotropic effect depends on calcium concentration and temperature.


Subject(s)
Lipopolysaccharides/metabolism , Plant Roots/microbiology , Rhizobiaceae/genetics , Rhizobiaceae/physiology , Calcium , Culture Media , Gene Expression Regulation, Bacterial/physiology , Genes, Bacterial/physiology , Lotus/microbiology , Lotus/physiology , Mutation , Phenotype , Plant Roots/physiology , Rhizobiaceae/metabolism
13.
Mol Plant Microbe Interact ; 15(4): 368-75, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12026175

ABSTRACT

The phosphoglucomutase (pgm) gene codes for a key enzyme required for the formation of UDP-glucose and ADP-glucose, the sugar donors for the biosynthesis of glucose containing polysaccharides. A Mesorhizobium loti pgm null mutant obtained in this study contains an altered form of lipopolysaccharide (LPS), lacks exopolysaccharide (EPS), beta cyclic glucan, and glycogen and is unable to nodulate Lotus tenuis. The nonnodulating phenotype of the pgm mutant was not due to the absence of glycogen, since a glycogen synthase (glgA) null mutant effectively nodulates this legume. In M. loti, pgm is part of the glycogen metabolism gene cluster formed by GlgP (glycogen phosphorylase), glgB (glycogen branching), glgC (ADP-glucose pyrophosphorylase), glgA, pgm, and glgX (glycogen debranching). The genes are transcribed as a single transcript from glgP to at least pgm under the control of a strong promoter (promoter I) upstream of glgP. An alternative promoter (promoter II), mapping in a 154-bp DNA fragment spanning 85 bp upstream of the glgA start codon and the first 69 bp of the glgA coding region, controls the expression of glgA and pgm, independently of the rest of the upstream genes. Primer extension experiments showed that transcription starts 19 bp upstream of the glgA start codon.


Subject(s)
Glycogen Synthase/genetics , Glycogen/metabolism , Lotus/microbiology , Phosphoglucomutase/genetics , Rhizobiaceae/genetics , 1,4-alpha-Glucan Branching Enzyme/genetics , Agrobacterium tumefaciens/enzymology , Agrobacterium tumefaciens/genetics , Base Sequence , Genes, Bacterial/genetics , Genetic Complementation Test , Glucose-1-Phosphate Adenylyltransferase , Glycogen Debranching Enzyme System/genetics , Glycogen Phosphorylase/genetics , Lac Operon/genetics , Molecular Sequence Data , Mutation , Nucleotidyltransferases/genetics , Operon/genetics , Promoter Regions, Genetic/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Rhizobiaceae/enzymology , Symbiosis/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...