Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Metabolites ; 13(10)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37887429

ABSTRACT

South Africa is rich in diverse medicinal plants, and it is reported to have over 35% of the global Helichrysum species, many of which are utilized in traditional medicine. Various phytochemical studies have offered valuable insights into the chemistry of Helichrysum plants, hinting at bioactive components that define the medicinal properties of the plant. However, there are still knowledge gaps regarding the size and diversity of the Helichrysum chemical space. As such, continuous efforts are needed to comprehensively characterize the phytochemistry of Helichrysum, which will subsequently contribute to the discovery and exploration of Helichrysum-derived natural products for drug discovery. Thus, reported herein is a computational metabolomics work to comprehensively characterize the metabolic landscape of the medicinal herb Helichrysum splendidum, which is less studied. Metabolites were methanol-extracted and analyzed on a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system. Spectral data were mined using molecular networking (MN) strategies. The results revealed that the metabolic map of H. splendidum is chemically diverse, with chemical superclasses that include organic polymers, benzenoids, lipid and lipid-like molecules, alkaloids, and derivatives, phenylpropanoids and polyketides. These results point to a vastly rich chemistry with potential bioactivities, and the latter was demonstrated through computationally assessing the binding of selected metabolites with CDK-2 and CCNB1 anti-cancer targets. Molecular docking results showed that flavonoids (luteolin, dihydroquercetin, and isorhamnetin) and terpenoids (tiliroside and silybin) interact strongly with the CDK-2 and CCNB1 targets. Thus, this work suggests that these flavonoid and terpenoid compounds from H. splendidum are potentially anti-cancer agents through their ability to interact with these proteins involved in cancer pathways and progression. As such, these actionable insights are a necessary step for further exploration and translational studies for H. splendidum-derived compounds for drug discovery.

2.
Sci Rep ; 12(1): 10450, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35729338

ABSTRACT

Microbial-based biostimulants are emerging as effective strategies to improve agricultural productivity; however, the modes of action of such formulations are still largely unknown. Thus, herein we report elucidated metabolic reconfigurations in maize (Zea mays) leaves associated with growth promotion and drought stress tolerance induced by a microbial-based biostimulant, a Bacillus consortium. Morphophysiological measurements revealed that the biostimulant induced a significant increase in biomass and enzymatic regulators of oxidative stress. Furthermore, the targeted metabolomics approach revealed differential quantitative profiles in amino acid-, phytohormone-, flavonoid- and phenolic acid levels in plants treated with the biostimulant under well-watered, mild, and severe drought stress conditions. These metabolic alterations were complemented with gene expression and global DNA methylation profiles. Thus, the postulated framework, describing biostimulant-induced metabolic events in maize plants, provides actionable knowledge necessary for industries and farmers to confidently and innovatively explore, design and fully implement microbial-based formulations and strategies into agronomic practices for sustainable agriculture and food production.


Subject(s)
Droughts , Zea mays , Biomass , Plant Growth Regulators/metabolism , Plant Leaves , Stress, Physiological
3.
Metabolites ; 11(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34357351

ABSTRACT

In response to abiotic stresses, plants mount comprehensive stress-specific responses which mediate signal transduction cascades, transcription of relevant responsive genes and the accumulation of numerous different stress-specific transcripts and metabolites, as well as coordinated stress-specific biochemical and physiological readjustments. These natural mechanisms employed by plants are however not always sufficient to ensure plant survival under abiotic stress conditions. Biostimulants such as plant growth-promoting rhizobacteria (PGPR) formulation are emerging as novel strategies for improving crop quality, yield and resilience against adverse environmental conditions. However, to successfully formulate these microbial-based biostimulants and design efficient application programs, the understanding of molecular and physiological mechanisms that govern biostimulant-plant interactions is imperatively required. Systems biology approaches, such as metabolomics, can unravel insights on the complex network of plant-PGPR interactions allowing for the identification of molecular targets responsible for improved growth and crop quality. Thus, this review highlights the current models on plant defence responses to abiotic stresses, from perception to the activation of cellular and molecular events. It further highlights the current knowledge on the application of microbial biostimulants and the use of epigenetics and metabolomics approaches to elucidate mechanisms of action of microbial biostimulants.

SELECTION OF CITATIONS
SEARCH DETAIL
...