Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 354: 127144, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35413421

ABSTRACT

The unprecedented demand for seafood has resulted in land-based recirculating aquaculture systems (RAS), a highly intensive but sustainable fish farming method. However, intensification also results in concentrated waste streams of fecal matter and uneaten feed. Harvesting and processing vast quantities of fish also leads to the production of byproducts, further creating disposal challenges for fish farms. Recent research indicates that anaerobic digestion (AD), often used for waste treatment in agricultural and wastewater industries, may provide a viable solution. Limited research on AD of freshwater, brackish, and saline wastewater from RAS facilities and co-digestion of seafood byproducts has shown promising results but with considerable operational and process stability issues. This review discusses challenges to AD due to low solid concentrations, salinity, low carbon/nitrogen ratio, and high lipid content in the waste streams. Opportunities for recovering valuable biomolecules and nutrients through microbial treatment, aquaponics, microalgae, and polyhydroxyalkanoate production are also discussed.


Subject(s)
Aquaculture , Wastewater , Anaerobiosis , Nitrogen/analysis , Seafood
2.
Water Res ; 121: 129-139, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28525785

ABSTRACT

Pairing denitrifying woodchip bioreactors and phosphorus-sorbing filters provides a unique, engineered approach for dual nutrient removal from waters impaired with both nitrogen (N) and phosphorus (P). This column study aimed to test placement of two P-filter media (acid mine drainage treatment residuals and steel slag) relative to a denitrifying system to maximize N and P removal and minimize pollution swapping under varying flow conditions (i.e., woodchip column hydraulic retention times (HRTs) of 7.2, 18, and 51 h; P-filter HRTs of 7.6-59 min). Woodchip denitrification columns were placed either upstream or downstream of P-filters filled with either medium. The configuration with woodchip denitrifying systems placed upstream of the P-filters generally provided optimized dissolved P removal efficiencies and removal rates. The P-filters placed upstream of the woodchip columns exhibited better P removal than downstream-placed P-filters only under overly long (i.e., N-limited) retention times when highly reduced effluent exited the woodchip bioreactors. The paired configurations using mine drainage residuals provided significantly greater P removal than the steel slag P-filters (e.g., 25-133 versus 8.8-48 g P removed m-3 filter media d-1, respectively), but there were no significant differences in N removal between treatments (removal rates: 8.0-18 g N removed m-3 woodchips d-1; N removal efficiencies: 18-95% across all HRTs). The range of HRTs tested here resulted in various undesirable pollution swapping by-products from the denitrifying bioreactors: nitrite production when nitrate removal was not complete and sulfate reduction, chemical oxygen demand production and decreased pH during overly long retention times. The downstream P-filter placement provided a polishing step for removal of chemical oxygen demand and nitrite.


Subject(s)
Denitrification , Phosphorus , Bioreactors , Nitrates , Nitrogen
3.
Water Res ; 105: 147-156, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27614035

ABSTRACT

Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m3 of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P2O5) and along the bioreactor floor (0.04 vs. 0.12%P2O5) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device.


Subject(s)
Bioreactors/microbiology , Wastewater , Denitrification , Nitrogen , Waste Disposal, Fluid , Water Purification/instrumentation
4.
J Environ Qual ; 45(3): 813-21, 2016 May.
Article in English | MEDLINE | ID: mdl-27136146

ABSTRACT

The performance of wood-based denitrifying bioreactors to treat high-nitrate wastewaters from aquaculture systems has not previously been demonstrated. Four pilot-scale woodchip bioreactors (approximately 1:10 scale) were constructed and operated for 268 d to determine the optimal range of design hydraulic retention times (HRTs) for nitrate removal. The bioreactors were operated under HRTs ranging from 6.6 to 55 h with influent nitrate concentrations generally between 20 and 80 mg NO-N L. These combinations resulted in N removal rates >39 g N m d, which is greater than previously reported. These high removal rates were due in large part to the relatively high chemical oxygen demand and warm temperature (∼19°C) of the wastewater. An optimized design HRT may not be the same based on metrics of N removal rate versus N removal efficiency; longer HRTs demonstrated higher removal efficiencies, and shorter HRTs had higher removal rates. When nitrate influent concentrations were approximately 75 mg NO-N L ( = 6 sample events), the shortest HRT (12 h) had the lowest removal efficiency (45%) but a significantly greater removal rate than the two longest HRTs (42 and 55 h), which were N limited. Sulfate reduction was also observed under highly reduced conditions and was exacerbated under prolonged N-limited environments. Balancing the removal rate and removal efficiency for this water chemistry with a design HRT of approximately 24 h would result in a 65% removal efficiency and removal rates of at least 18 g N m d.


Subject(s)
Aquaculture , Bioreactors , Wastewater , Nitrates , Waste Disposal, Fluid , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...