Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Med Chem ; 67(5): 3287-3306, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38431835

ABSTRACT

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium ion channel highly expressed in the primary sensory neurons, functioning as a polymodal sensor for exogenous and endogenous stimuli, and has been implicated in neuropathic pain and respiratory disease. Herein, we describe the optimization of potent, selective, and orally bioavailable TRPA1 small molecule antagonists with strong in vivo target engagement in rodent models. Several lead molecules in preclinical single- and short-term repeat-dose toxicity studies exhibited profound prolongation of coagulation parameters. Based on a thorough investigative toxicology and clinical pathology analysis, anticoagulation effects in vivo are hypothesized to be manifested by a metabolite─generated by aldehyde oxidase (AO)─possessing a similar pharmacophore to known anticoagulants (i.e., coumarins, indandiones). Further optimization to block AO-mediated metabolism yielded compounds that ameliorated coagulation effects in vivo, resulting in the discovery and advancement of clinical candidate GDC-6599, currently in Phase II clinical trials for respiratory indications.


Subject(s)
Respiratory Tract Diseases , Transient Receptor Potential Channels , Humans , Transient Receptor Potential Channels/metabolism , TRPA1 Cation Channel , Aldehyde Oxidase/metabolism , Oxidoreductases/metabolism , Cytoskeletal Proteins/metabolism
2.
J Med Chem ; 64(7): 3843-3869, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33749283

ABSTRACT

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium-permeable ion channel highly expressed in the primary sensory neurons functioning as a polymodal sensor for exogenous and endogenous stimuli and has generated widespread interest as a target for inhibition due to its implication in neuropathic pain and respiratory disease. Herein, we describe the optimization of a series of potent, selective, and orally bioavailable TRPA1 small molecule antagonists, leading to the discovery of a novel tetrahydrofuran-based linker. Given the balance of physicochemical properties and strong in vivo target engagement in a rat AITC-induced pain assay, compound 20 was progressed into a guinea pig ovalbumin asthma model where it exhibited significant dose-dependent reduction of inflammatory response. Furthermore, the structure of the TRPA1 channel bound to compound 21 was determined via cryogenic electron microscopy to a resolution of 3 Å, revealing the binding site and mechanism of action for this class of antagonists.


Subject(s)
Asthma/drug therapy , Furans/therapeutic use , Purines/therapeutic use , TRPA1 Cation Channel/antagonists & inhibitors , Animals , Asthma/chemically induced , Asthma/complications , CHO Cells , Cricetulus , Furans/chemical synthesis , Furans/metabolism , Guinea Pigs , Humans , Inflammation/drug therapy , Inflammation/etiology , Ligands , Male , Molecular Structure , Ovalbumin , Oxadiazoles/chemical synthesis , Oxadiazoles/metabolism , Oxadiazoles/therapeutic use , Protein Binding , Purines/chemical synthesis , Purines/metabolism , Rats, Sprague-Dawley , Structure-Activity Relationship , TRPA1 Cation Channel/metabolism
4.
J Med Chem ; 60(17): 7371-7392, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28731719

ABSTRACT

Autotaxin (ATX) is a secreted enzyme playing a major role in the production of lysophosphatidic acid (LPA) in blood through hydrolysis of lysophosphatidyl choline (LPC). The ATX-LPA signaling axis arouses a high interest in the drug discovery industry as it has been implicated in several diseases including cancer, fibrotic diseases, and inflammation, among others. An imidazo[1,2-a]pyridine series of ATX inhibitors was identified out of a high-throughput screening (HTS). A cocrystal structure with one of these compounds and ATX revealed a novel binding mode with occupancy of the hydrophobic pocket and channel of ATX but no interaction with zinc ions of the catalytic site. Exploration of the structure-activity relationship led to compounds displaying high activity in biochemical and plasma assays, exemplified by compound 40. Compound 40 was also able to decrease the plasma LPA levels upon oral administration to rats.


Subject(s)
Imidazoles/chemistry , Imidazoles/pharmacology , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Animals , Humans , Imidazoles/pharmacokinetics , Lysophosphatidylcholines/metabolism , Lysophospholipids/metabolism , Male , Mice , Molecular Docking Simulation , Phosphodiesterase Inhibitors/pharmacokinetics , Phosphoric Diester Hydrolases/chemistry , Pyridines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...