Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (188)2022 10 20.
Article in English | MEDLINE | ID: mdl-36342175

ABSTRACT

Adult Hippocampal Neurogenesis (AHN), which consists of a lifelong maintenance of proliferative and quiescent neural stem cells (NSCs) within the sub-granular zone (SGZ) of the dentate gyrus (DG) and their differentiation from newly born neurons into granule cells in the granule cell layer, is well validated across numerous studies. Using genetically modified animals, particularly rodents, is a valuable tool to investigate signaling pathways regulating AHN and to study the role of each cell type that compose the hippocampal neurogenic niche. To address the latter, methods combining single nuclei isolation with next generation sequencing have had a significant impact in the field of AHN to identify gene signatures for each cell population. Further refinement of these techniques is however needed to phenotypically profile rarer cell populations within the DG. Here, we present a method that utilizes Fluorescence Activated Nuclei Sorting (FANS) to exclude most neuronal populations from a single nuclei suspension isolated from freshly dissected DG, by selecting unstained nuclei for the NeuN antigen, in order to perform single nuclei RNA sequencing (snRNA-seq). This method is a potential steppingstone to further investigate intercellular regulation of the AHN and to uncover novel cellular markers and mechanisms across species.


Subject(s)
Neural Stem Cells , Neurogenesis , Animals , Neurogenesis/physiology , Neurons/physiology , Hippocampus , Sequence Analysis, RNA , Dentate Gyrus
2.
Cells ; 11(3)2022 02 02.
Article in English | MEDLINE | ID: mdl-35159329

ABSTRACT

The oligodendrocyte progenitors (OPCs) are at the front of the glial reaction to the traumatic brain injury. However, regulatory pathways steering the OPC reaction as well as the role of reactive OPCs remain largely unknown. Here, we compared a long-lasting, exacerbated reaction of OPCs to the adult zebrafish brain injury with a timely restricted OPC activation to identify the specific molecular mechanisms regulating OPC reactivity and their contribution to regeneration. We demonstrated that the influx of the cerebrospinal fluid into the brain parenchyma after injury simultaneously activates the toll-like receptor 2 (Tlr2) and the chemokine receptor 3 (Cxcr3) innate immunity pathways, leading to increased OPC proliferation and thereby exacerbated glial reactivity. These pathways were critical for long-lasting OPC accumulation even after the ablation of microglia and infiltrating monocytes. Importantly, interference with the Tlr1/2 and Cxcr3 pathways after injury alleviated reactive gliosis, increased new neuron recruitment, and improved tissue restoration.


Subject(s)
Oligodendrocyte Precursor Cells , Animals , Brain , Gliosis/metabolism , Immunity, Innate , Oligodendrocyte Precursor Cells/metabolism , Zebrafish
3.
Ageing Res Rev ; 71: 101447, 2021 11.
Article in English | MEDLINE | ID: mdl-34403830

ABSTRACT

Deficits in adult neurogenesis may contribute to the aetiology of many neurodevelopmental, psychiatric and neurodegenerative diseases. Genetic ablation of neurogenesis provides proof of concept that adult neurogenesis is required to sustain complex and dynamic cognitive functions, such as learning and memory, mostly by providing a high degree of plasticity to neuronal circuits. In addition, adult neurogenesis is reactive to external stimuli and the environment making it particularly susceptible to impairment and consequently contributing to comorbidity. In the human brain, the dentate gyrus of the hippocampus is the main active source of neural stem cells that generate granule neurons throughout life. The regulation and preservation of the pool of neural stem cells is central to ensure continuous and healthy adult hippocampal neurogenesis (AHN). Recent advances in genetic and metabolic profiling alongside development of more predictive animal models have contributed to the development of new concepts and the emergence of molecular mechanisms that could pave the way to the implementation of new therapeutic strategies to treat neurological diseases. In this review, we discuss emerging molecular mechanisms underlying AHN that could be embraced in drug discovery to generate novel concepts and targets to treat diseases of ageing including neurodegeneration. To support this, we review cellular and molecular mechanisms that have recently been identified to assess how AHN is sustained throughout life and how AHN is associated with diseases. We also provide an outlook on strategies for developing correlated biomarkers that may accelerate the translation of pre-clinical and clinical data and review clinical trials for which modulation of AHN is part of the therapeutic strategy.


Subject(s)
Neural Stem Cells , Neurogenesis , Aging , Animals , Hippocampus , Humans , Neurons
4.
EMBO J ; 38(17): e100481, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31304985

ABSTRACT

Regulation of adult neural stem cell (NSC) number is critical for lifelong neurogenesis. Here, we identified a post-transcriptional control mechanism, centered around the microRNA 204 (miR-204), to control the maintenance of quiescent (q)NSCs. miR-204 regulates a spectrum of transcripts involved in cell cycle regulation, neuronal migration, and differentiation in qNSCs. Importantly, inhibition of miR-204 function reduced the number of qNSCs in the subependymal zone (SEZ) by inducing pre-mature activation and differentiation of NSCs without changing their neurogenic potential. Strikingly, we identified the choroid plexus of the mouse lateral ventricle as the major source of miR-204 that is released into the cerebrospinal fluid to control number of NSCs within the SEZ. Taken together, our results describe a novel mechanism to maintain adult somatic stem cells by a niche-specific miRNA repressing activation and differentiation of stem cells.


Subject(s)
Choroid Plexus/chemistry , MicroRNAs/genetics , Neural Stem Cells/cytology , Adult , Animals , Cell Cycle , Cell Differentiation , Cell Movement , Female , Gene Expression Regulation , Humans , Male , Mice , MicroRNAs/cerebrospinal fluid , Middle Aged , Neural Stem Cells/chemistry , Stem Cell Niche
5.
Mol Cell ; 74(5): 951-965.e13, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31047794

ABSTRACT

RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are key regulators of gene expression, but their joint functions in coordinating cell fate decisions are poorly understood. Here we show that the expression and activity of the RBP TDP-43 and the long isoform of the lncRNA Neat1, the scaffold of the nuclear compartment "paraspeckles," are reciprocal in pluripotent and differentiated cells because of their cross-regulation. In pluripotent cells, TDP-43 represses the formation of paraspeckles by enhancing the polyadenylated short isoform of Neat1. TDP-43 also promotes pluripotency by regulating alternative polyadenylation of transcripts encoding pluripotency factors, including Sox2, which partially protects its 3' UTR from miR-21-mediated degradation. Conversely, paraspeckles sequester TDP-43 and other RBPs from mRNAs and promote exit from pluripotency and embryonic patterning in the mouse. We demonstrate that cross-regulation between TDP-43 and Neat1 is essential for their efficient regulation of a broad network of genes and, therefore, of pluripotency and differentiation.


Subject(s)
Cell Differentiation/genetics , DNA-Binding Proteins/genetics , Mouse Embryonic Stem Cells/metabolism , RNA, Long Noncoding/genetics , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , DNA-Binding Proteins/metabolism , Humans , Mice , MicroRNAs/genetics , Pluripotent Stem Cells/metabolism , Polyadenylation/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
6.
Cell Rep ; 25(12): 3241-3251.e5, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30566853

ABSTRACT

Zebrafish have a high capacity to replace lost neurons after brain injury. New neurons involved in repair are generated by a specific set of glial cells, known as ependymoglial cells. We analyze changes in the transcriptome of ependymoglial cells and their progeny after injury to infer the molecular pathways governing restorative neurogenesis. We identify the aryl hydrocarbon receptor (AhR) as a regulator of ependymoglia differentiation toward post-mitotic neurons. In vivo imaging shows that high AhR signaling promotes the direct conversion of a specific subset of ependymoglia into post-mitotic neurons, while low AhR signaling promotes ependymoglial proliferation. Interestingly, we observe the inactivation of AhR signaling shortly after injury followed by a return to the basal levels 7 days post injury. Interference with timely AhR regulation after injury leads to aberrant restorative neurogenesis. Taken together, we identify AhR signaling as a crucial regulator of restorative neurogenesis timing in the zebrafish brain.


Subject(s)
Neurogenesis , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , Animals , Cell Differentiation , Cell Proliferation , Cell Survival , Ependymoglial Cells/cytology , Ependymoglial Cells/metabolism , Mitosis , Neurons/cytology , Time Factors , Zebrafish
7.
Cereb Cortex ; 27(8): 4213-4228, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28472290

ABSTRACT

Aging leads to adverse outcomes after traumatic brain injury. The mechanisms underlying these defects, however, are not yet clear. In this study, we found that astrocytes in the aged post-traumatic cerebral cortex develop a significantly reduced proliferative response, resulting in reduced astrocyte numbers in the penumbra. Moreover, experiments of reactive astrocytes in vitro reveal that their diminished proliferation is due to an age-related switch in the division mode with reduced cell-cycle re-entry rather than changes in cell-cycle length. Notably, reactive astrocytes in vivo and in vitro become refractory to stimuli increasing their proliferation during aging, such as Sonic hedgehog signaling. These data demonstrate for the first time that age-dependent, most likely intrinsic changes in the proliferative program of reactive astrocytes result in their severely hampered proliferative response to traumatic injury thereby affecting astrocyte homeostasis.


Subject(s)
Aging/physiology , Astrocytes/physiology , Brain Injuries/physiopathology , Cell Proliferation/physiology , Homeostasis/physiology , Somatosensory Cortex/physiopathology , Aging/pathology , Animals , Astrocytes/pathology , Brain Injuries/pathology , Cells, Cultured , Disease Models, Animal , Gliosis/pathology , Gliosis/physiopathology , Hedgehog Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction , Somatosensory Cortex/injuries , Somatosensory Cortex/pathology , Wounds, Stab
SELECTION OF CITATIONS
SEARCH DETAIL
...