Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 16(28): e1907661, 2020 07.
Article in English | MEDLINE | ID: mdl-32462808

ABSTRACT

Non-Newtonian nanofluids present outstanding features in terms of energy transfer and conductivity with high application in numerous areas. In this work, non-Newtonian nanofluids based on carbon dots (Cdots) functionalized with ionic liquids (ILs) are developed. The nanofluids are produced using a simple, single-step method where the raw materials for the Cdots synthesis are glucose and waste biomass (chitin from crab shells). The use of ILs as both reaction media and functionalization molecules allows for the development of a new class of nanofluids, where the ILs on the Cdots surface represent the base-fluid. Here, the well-known benign IL 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and a novel home-made IL (1-tosylate-3-methyl-imidazolium triflate) [Tmi][Trif] are used. The nanofluids obtained from both substrates show, apart from high conductivity and viscosity, light absorption, and good wettability, an appealing thermal sensitivity behavior. This thermal sensitivity is preserved even when applied as thin films on glass slides and can be boosted using the surface plasmon resonance effect. The results reported demonstrate that the new Cdots/IL-based nanofluids constitute a versatile and cost-effective route for achieving high-performance thermosensitive non-Newtonian sustainable nanofluids with tremendous potential for the energy coatings sector and heat transfer film systems.


Subject(s)
Ionic Liquids , Carbon , Electric Conductivity , Imidazoles , Viscosity
2.
Langmuir ; 23(20): 10348-52, 2007 Sep 25.
Article in English | MEDLINE | ID: mdl-17711314

ABSTRACT

This study deals with the grafting of carbohydrate monomers on poly(ethylene terephthalate) fibers by double argon plasma treatment. Two monomers were used: allyl alpha-D-galactopyranoside and 2-methacryloxyethyl glucoside. The quantity of grafted carbohydrates was determined by phenol/sulfuric acid colorimetric titration. The graft density was observed to vary according to the monomer used. Allyl alpha-D-galactopyranoside yields to smaller graft densities compared to 2-methacryloxyethyl glucoside, suggesting transfer reactions occurring at the surface with allyl alpha-D-galactopyranoside. Fibers with the highest graft levels were obtained with the higher monomer concentration and the lower quantity of fiber treated in a plasma reactor. The grafting density can be modulated by the monomer concentration and mass of fiber exposed in the plasma reactor. For 0.5 mg of fibers, the graft densities for 23 and 68 mM allyl alpha-D-galactopyranoside are, respectively, 18 and 35 nmol/cm2. For 0.5 mg of fibers, the graft densities for 19 and 38 mM 2-methacryloxyethyl glucoside are, respectively, 150 and 250 nmol/cm2. Comparative study without the preactivation treatment shows the efficiency of the preactivation: for a mass of fiber of 0.5 mg and a 2-methacryloxyethyl glucoside concentration of 38 mM, the grafting density without plasma pretreatment is 38 nmol/cm2. Attenuated total reflectance Fourier transform infrared spectra confirmed the anchoring of the glycopolymer onto the poly(ethylene terephthalate) surfaces. Atomic force microscopy and scanning electronic microscopy pictures indicated their morphological changes.

3.
Biomacromolecules ; 8(2): 679-85, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17291092

ABSTRACT

Grafting of a new carbohydrate UV-reactive molecule, an azidophenyl lactamine (AzPhLac), was achieved on fibers of three different diameters: 12, 18, and 32 microm. Adsorption of AzPhLac on fibers was obtained by using the dip-coating method in solution. The effect of the solution concentration on surface density and yield of grafted AzPhLac was investigated. Surface densities in the range 3-67 nmol/cm2 were obtained without marked difference related to the diameter of the fiber. Quantitative grafting was obtained with a surface of fiber of 1 cm2 and the lowest concentration (0.5 mM) of AzPhLac solution. The surface density and grafting yield decreased with the available surface of the fibers. This phenomenon could be attributed to a masking core-shell effect with outer fibers in the shell preventing the UV grafting of the fibers located in the core of the fibers' bundles. Scanning electron (SEM) and atomic force (AFM) microscopic observations suggested that homogeneous grafting might be obtained.


Subject(s)
Azides/chemistry , Carbohydrates/chemistry , Photochemistry/methods , Polyethylene Glycols/chemistry , Adsorption , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Polyethylene Terephthalates , Surface Properties , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...