Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 8(1): 214-222, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27960058

ABSTRACT

The Li-O2/CO2 battery with high capacity has recently been proposed as a new protocol to convert CO2. However, the fundamental mechanism for the reaction still remains hazy. Here, we investigated the discharge processes of Li-O2/CO2 (70%/30%) batteries in two solvents, dimethyl sulfoxide (DMSO) and 1,2-dimethoxyethane (DME). During discharge, both solvents initially show the reduction of oxygen. However, afterward, the solvent affects the reaction pathways of superoxide species by solvating Li+ with different strength, depending on the so-called donor number. More precisely, the initial formation of CO4•- is favored in DMSO at the expense of lithium superoxide formation that we observed in DME. Despite the different intermediate processes, X-ray diffraction showed that Li2CO3 was the final discharge product in both solvents. Moreover, we observed that CO2 cannot be reduced within the electrochemical stability window of DMSO and DME.

SELECTION OF CITATIONS
SEARCH DETAIL
...