Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 122: 678-691, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28683404

ABSTRACT

Separate sewer systems are sensitive to illegal or mis-connections. Several techniques (including the Distributed Temperature Sensor) are now available to identify and locate those connections. Based on thermal fingerprints, DTS allows the localization of each lateral connection along a reach. The use of Infra-Red camera has been investigated with 748 laboratory experiments (artificial connections along a flume). The tested connections vary in diameters (from 75 to 200 mm), lengths of intrusion (from 0 to 200 m), shapes (circular or linear i.e. cracks), depths, discharge rates between the lateral connection and the main flume, and temperatures. IR frame analysis (for detection) and 2D temperature mapping (at the free water surface, for quantification) demonstrate that: i) the detection limit is very low (ratio between lateral and main discharges: 0.025) and ii) the quantification of the lateral discharge is impossible. Application of an IR camera seems to be a promising technique to detect lateral connections.


Subject(s)
Sewage , Equipment Design , Temperature
2.
Water Res ; 101: 519-534, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27295626

ABSTRACT

UV/Vis spectrophotometers have been used for one decade to monitor water quality in various locations: sewers, rivers, wastewater treatment plants (WWTPs), tap water networks, etc. Resulting equivalent concentrations of interest can be estimated by three ways: i) by manufacturer global calibration; ii) by local calibration based on the provided global calibration and grab sampling; iii) by advanced calibration looking for relations between UV/Vis spectra and corresponding concentrations from grab sampling. However, no study has compared the applied methods so far. This collaborative work presents a comparison between five different methods. A Linear Regression (LR), Support Vector Machine (SVM), EVOlutionary algorithm method (EVO) and Partial Least Squares (PLS) have been applied on various data sets (sewers, rivers, WWTPs under dry, wet and all weather conditions) and for three water quality parameters: TSS, COD total and dissolved. Two criteria (r(2) and Root Mean Square Error RMSE) have been calculated - on calibration and verification data subsets - to evaluate accuracy and robustness of the applied methods. Values of criteria have then been statistically analysed for all and separated data sets. Non-consistent outcomes come through this study. According to the Kruskal-Wallis test and RMSEs, PLS and SVM seem to be the best methods. According to uncertainties in laboratory analysis and ranking of methods, LR and EVO appear more robust and sustainable for concentration estimations. Conclusions are mostly independent of water matrices, weather conditions or concentrations investigated.


Subject(s)
Rivers , Wastewater , Calibration , Least-Squares Analysis , Support Vector Machine
3.
Water Sci Technol ; 68(2): 462-71, 2013.
Article in English | MEDLINE | ID: mdl-23863442

ABSTRACT

Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.


Subject(s)
Environmental Monitoring/instrumentation , Water Pollutants/analysis , Biological Oxygen Demand Analysis , Environmental Monitoring/methods , Hydrogen-Ion Concentration , Nephelometry and Turbidimetry , Rain , Regression Analysis , Wastewater/analysis , Wastewater/chemistry
4.
Sensors (Basel) ; 10(9): 7947-78, 2010.
Article in English | MEDLINE | ID: mdl-22163635

ABSTRACT

This review discusses from a critical perspective the development of new sensors for the measurement of priority pollutants targeted in the E.U. Water Framework Directive. Significant advances are reported in the paper and their advantages and limitations are also discussed. Future perspectives in this area are also pointed out in the conclusions. This review covers publications appeared since December 2006 (the publication date of the Swift report). Among priority substances, sensors for monitoring the four WFD metals represent 81% of published papers. None of analyzed publications present a micro-sensor totally validated in laboratory, ready for tests under real conditions in the field. The researches are mainly focused on the sensing part of the micro-sensors. Nevertheless, the main factor limiting micro-sensor applications in the environment is the ruggedness of the receptor towards environmental conditions. This point constitutes the first technological obstacle to be overcome for any long-term field tests.


Subject(s)
Electrochemical Techniques/instrumentation , Environmental Monitoring/instrumentation , Water Supply/standards , Electrochemical Techniques/methods , Environmental Monitoring/methods , European Union , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Water Supply/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...