Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Acquir Immune Defic Syndr ; 61(3): 302-9, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22842844

ABSTRACT

OBJECTIVE: To evaluate the performance of Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) creatinine, cystatin C, and creatinine-cystatin C estimating equations in HIV-positive patients. METHODS: We evaluated the performance of the Modification of Diet in Renal Disease (MDRD) Study and CKD-EPI creatinine 2009, CKD-EPI cystatin C 2012, and CKD-EPI creatinine-cystatin C 2012 glomerular filtration rate (GFR) estimating equations compared with GFR measured using plasma clearance of iohexol in 200 HIV-positive patients on stable antiretroviral therapy. Creatinine and cystatin C assays were standardized to certified reference materials. RESULTS: Of the 200 participants, median (IQR) CD4 count was 536 (421) and 61% had an undetectable HIV viral load. Mean (SD) measured GFR (mGFR) was 87 (26) mL/min per 1.73 m. All CKD-EPI equations performed better than the MDRD Study equation. All 3 CKD-EPI equations had similar bias and precision. The cystatin C equation was not more accurate than the creatinine equation. The creatinine-cystatin C equation was significantly more accurate than the cystatin C equation, and there was a trend toward greater accuracy than the creatinine equation. Accuracy was equal or better in most subgroups with the combined equation compared to either alone. CONCLUSIONS: The CKD-EPI cystatin C equation does not seem to be more accurate than the CKD-EPI creatinine equation in patients who are HIV-positive, supporting the use of the CKD-EPI creatinine equation for routine clinical care for use in North American populations with HIV. The use of both filtration markers together as a confirmatory test for decreased estimated GFR based on creatinine in individuals who are HIV-positive requires further study.


Subject(s)
Anti-HIV Agents/therapeutic use , Creatinine/blood , Cystatin C/blood , Glomerular Filtration Rate , HIV Seropositivity/physiopathology , Anti-HIV Agents/adverse effects , Biomarkers/blood , Female , Glomerular Filtration Rate/drug effects , Glomerular Filtration Rate/physiology , HIV Seropositivity/complications , HIV Seropositivity/drug therapy , Humans , Iohexol/pharmacokinetics , Male , Middle Aged , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/etiology
2.
Biol Bull ; 213(2): 160-71, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17928523

ABSTRACT

This paper concerns the role of nitric oxide (NO) in controlling metamorphosis in the marine gastropod Crepidula fornicata. Metamorphosis was stimulated by the nitric oxide synthase (NOS) inhibitors AGH (aminoguanidine hemisulfate) and SMIS (S-methylisothiourea sulfate) at concentrations of about 100-1000 micromol l(-1) and 50-200 micromol l(-1), respectively. Metamorphosis was not, however, induced by the NOS inhibitor l-NAME (l-N(G)-nitroarginine methyl ester) at even the highest concentration tested, 500 micromol l(-1). Moreover, pre-incubation with l-NAME at 20 and 80 micromol l(-1) did not increase the sensitivity of competent larvae to excess K(+), a potent inducer of metamorphosis in this species; we suggest that either l-NAME is ineffective in suppressing NO production in larvae of C. fornicata, or that it works only on the constitutive isoform of the enzyme. In contrast, metamorphosis was potentiated by the guanylate cyclase inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3, -a]quinoxalin-1-one) in response to a natural metamorphic inducer derived from conspecific adults. Because NO typically stimulates cGMP production through the activation of soluble guanylate cyclase, this result supports the hypothesis that NO acts as an endogenous inhibitor of metamorphosis in C. fornicata. The expression of NOS, shown by immunohistochemical techniques, was detected in the apical ganglion of young larvae but not in older larvae, further supporting the hypothesis that metamorphosis in C. fornicata is made possible by declines in the endogenous concentration of NO during development.


Subject(s)
Metamorphosis, Biological/physiology , Nitric Oxide/physiology , Snails/growth & development , Animals , Guanylate Cyclase/antagonists & inhibitors , Immunohistochemistry , Larva/growth & development , Nitric Oxide Synthase/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...