Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611178

ABSTRACT

Conductive polymers such as polypyrrole have been widely used as pseudo-capacitive electrodes for supercapacitors. This work demonstrates a simple method to improve the performance of conductive polymer electrodes by adding montmorillonite in order to perform capacitive behavior. Conductive composite polymers (CCPs) based on montmorillonite/polypyrrole (MMT/PPy(Cl)) have been synthesized by polymerization using FeCl3 as an oxidizing agent. During the preparation of CCP, the effect of MMT/pyrrole mass ratio and the influence of the amount of added H+ and temperature of the synthesis medium on the electrochemical performance of the composite have been investigated. The investigation associated with conductivity measurement allowed us to determine the best conditions to reach a high specific capacitance of 465 F gr-1 measured by cyclic voltammetry with respect to the CCP synthesized at ambient temperature (220 F gr-1) and a 35% increase in capacity compared to its homologue synthesized in neutral conditions at a low temperature. These performances have been advantageously correlated both to the edge acidity of the host material and to the evolution of its conductivity according to the preparation conditions. The galvanostatic charge/discharge tests also confirm the stability of the obtained composite, and a capacitance of 325 F g-1 for the best CCP is recorded with a regime of 1 A g-1. In addition, the durability of the device shows that the proposed material has a relatively good stability during cycling.

2.
ChemistryOpen ; 13(2): e202300061, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37493306

ABSTRACT

This study evaluates the ability of a choline chloride:ethylene glycol-based deep eutectic solvent (DES) to dissolve lithium cobalt oxide (LCO) which is used as a cathode active material in Li-ion batteries. Both a commercial powder and spent cathodes have been used. It was demonstrated that if HCl is added in a small proportion, a rapid and efficient LCO dissolution can be achieved. Indeed, if more than three protons are added per one cobalt atom present in the LCO structure, a complete dissolution of the material is accomplished within 2 h at 80 °C. This result might be considered as a viable alternative compared to the literature where much longer reaction times and higher temperatures are applied to achieve similar results with the same DES system used either pure or in presence of additional reducing agents. It was further demonstrated that Co and Li can be fully precipitated after Li2 CO3 addition. This precipitation does neither pollute the DES nor leads to its degradation provided the pH does not exceed 10. Finally, it was shown that two additional reuse cycles can be carried out without any decrease of recovery efficiency, while no degradation products have been detected within the DES phase.

3.
Phys Chem Chem Phys ; 22(41): 24077-24085, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33079085

ABSTRACT

Although they exhibit huge versatility, coordination complexes have been rarely investigated in the field of cathode materials for batteries. Despite their relatively high molecular mass, according to the nature of the metallic center and that of the ligand, the E° value and the electron transfer kinetics can be adjusted to develop a performant material compatible with the electrolyte. Here, we propose to investigate FeII poly-bipyridine complexes with a view to check the impact of the nature of the electrolyte as well as the influence of the distance between two redox centers when polymerized on the electrochemical response in battery conditions. To understand these changes, three lithium salts have been studied: LiClO4, LiPF6 and LiTFSI (TFSI = bis(trifluoromethane)sulfonimide). In order to mimic these impacts, monomer complexes (mono- and binuclear) have been electrochemically studied, whereas, thanks to ab initio calculations, their redox behavior has been correlated to the ligand environment of the metallic center. Finally, despite their expected low mass capacity, these polymeric coordination complexes have been involved in battery conditions.

5.
Sci Rep ; 9(1): 135, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30644414

ABSTRACT

Combining energy conversion and storage at a device and/or at a molecular level constitutes a new research field raising interest. This work aims at investigating how prolonged standard light exposure (A.M. 1.5G) interacts with conventional batteries electrolyte, commonly used in the photo-assisted or photo-rechargeable batteries, based on 1 mol.L-1 LiPF6 EC/DMC electrolyte. We demonstrate the intrinsic chemical robustness of this class of electrolyte in absence of any photo-electrodes. However, based on different steady-state and time-resolved spectroscopic techniques, it is for the first time highlighted that the solvation of lithium and hexafluorophosphate ions by the carbonates are modified by light exposure leading to absorbance and ionic conductivity modifications without detrimental effects onto the electrochemical properties.

6.
ACS Appl Mater Interfaces ; 10(6): 5527-5533, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29292985

ABSTRACT

The development of efficient, inexpensive, and safe rechargeable batteries for large-scale environmentally benign cells is one of the key requirements to accommodate and satisfy various technological applications. To date, the development of magnesium battery as a promising candidate for next-generation battery systems has been hindered by the lack of high performance and stable electrolyte. In this work, we have developed an original, safe, and high-performance class of electrolytes based on a simple mixture of commercially available compounds, that is, Mg(TFSI)2, anthracene, MgCl2, and diglyme solvent. We have proven that anthracene induces stabilization of the reduced form of magnesium involving reversible magnesium plating/stripping with very high current density. The electrolyte investigated exhibits an unprecedented electrochemical stability window of up to 3.1 V, whereas MgCl2 addition allows the improvement of the Mg/electrolyte interface properties and enables a large cyclability of Mg/Mo6S8 Chevrel phase cell, allowing one to reach high performances.

7.
ACS Appl Mater Interfaces ; 9(34): 28377-28385, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28792210

ABSTRACT

A new class of electrolyte based on TFSI- and triphenolate-borohydride anions was designed and produced which fulfill all requirements of easy synthesis, high ionic conductivity, wide potential window, and noncorrosion of Al current collector. The electrolyte composed of magnesium triphenolate borohydride and Mg(TFSI)2 in glyme simultaneously displays a high conductivity of 5.5 mS cm-1 at 25 °C and a reversible Mg plating/stripping with high current density and Coulombic efficiency at room temperature. By addition of a slight amount of MgCl2 to this electrolyte, a Coulombic efficiency of 90% in an SS/Mg cell, stable cycling performance, and a wide anodic potential of 3.4 V vs Mg2+/Mg on Al current collector can be reached. Reversible and efficient Mg insertion/deinsertion with a high capacity of 94 mAh g-1 and 96% Coulombic efficiency was obtained in a Mo6S8 Chevrel cathode phase.

8.
Dalton Trans ; 42(47): 16527-37, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24030389

ABSTRACT

A number of multinuclear assemblies based on [Ru(bpy)3](2+) photosensitive moieties covalently linked to Fe(II), Co(II) or Zn(II) polypyridyl complexes are investigated regarding their initial and thermally equilibrated excited states. Ground state absorption and vibrational spectroscopic techniques are carried out, along with resonance Raman, transient absorption, and time resolved resonance Raman measurements. These methods are also supplemented by computational modelling. In all systems, the results clearly show that under visible irradiation, the substituted bpy linker ligand is involved in the initial (1)MLCT excitation of the Ru(II) subunit. For the Ru(II)/Fe(II) linked assemblies, absorption due to [Ru(bpy)3](2+) and [Fe(tpy)2](2+) subunits are identified to give rise to differing resonance Raman spectra. Transient absorption spectra of complexes containing two [Ru(bpy)3](2+) and one [Fe(tpy)2](2+) subunits show a strong depletion for the [Fe(tpy)2](2+) absorption peaks, which decay on a much faster timescale than the remainder of the transient features. This is consistent with a single excitation of the multimetallic assembly, followed by fast depletion (<10 ns) of the spectral signal from the bpy ligand bound to the Fe subunit. The results are supported by time resolved resonance Raman measurements where a number of features assigned to the linker are found at early time-scales. Using transient absorption this process can be followed for most complexes.

9.
Chem Commun (Camb) ; 49(72): 7899-901, 2013 Sep 18.
Article in English | MEDLINE | ID: mdl-23873017

ABSTRACT

In order to improve the electrochemical performances of lithium-sulfur batteries, it is crucial to understand profoundly their working mechanism and the limitation factors. This communication presents synchrotron-based in situ XRD studies of structural modifications occurring inside the cell upon cycling, since the active material changes constantly its form between solid and liquid phases.

10.
Anal Chem ; 84(9): 3973-80, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22482872

ABSTRACT

The lithium/sulfur battery is a promising electrochemical system that has a high theoretical capacity of 1675 mAh g(-1), but its discharge mechanism is well-known to be a complex multistep process. As the active material dissolves during cycling, this discharge mechanism was investigated through the electrolyte characterization. Using high-performance liquid chromatography, UV-visible absorption, and electron spin resonance spectroscopies, we investigated the electrolyte composition at different discharge potentials in a TEGDME-based electrolyte. In this study, we propose a possible mechanism for sulfur reduction consisting of three steps. Long polysulfide chains are produced during the first reduction step (2.4-2.2 V vs Li(+)/Li), such as S(8)(2-) and S(6)(2-), as evidenced by UV and HPLC data. The S(3)(•-) radical can also be found in solution because of a disproportionation reaction. S(4)(2-) is produced during the second reduction step (2.15-2.1 V vs Li(+)/Li), thus pointing out the gradual decrease of the polysulfide chain lengths. Finally, short polysulfide species, such as S(3)(2-), S(2)(2-), and S(2-), are produced at the end of the reduction process, i.e., between 2.1 and 1.9 V vs Li(+)/Li. The precipitation of the poorly soluble and insulating short polysulfide compounds was evidenced, thus leading to the positive electrode passivation and explaining the early end of discharge.

11.
J Phys Chem B ; 114(2): 894-903, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20039688

ABSTRACT

Low-melting ionic liquid, IL, based on small aliphatic quaternary ammonium cations ([R(1)R(2)R(3)NR](+), where R(1), R(2), R(3) = CH(3) or C(2)H(5), R = C(3)H(7), C(4)H(9), C(6)H(13), C(8)H(17), CF(3)C(3)H(6)) and imide anion were prepared and characterized. The physicochemical and electrochemical properties of these ILs, including melting point, glass transition, and degradation temperatures; viscosity; density; ionic conductivity; diffusion coefficient; and electrochemical stability, were determined. Heteronuclear Overhauser NMR spectroscopy experiments were also performed to point out the presence of pair correlation between the different moieties. The LiTFSI addition effect on the IL properties was studied with the same methodology. Some nanoscale organization with segregation of polar and apolar domains was observed. ILs with small alkyl chain length or fluorinated ammonium exhibit very high electrochemical stability in oxidation.

12.
Inorg Chem ; 48(7): 3125-31, 2009 Apr 06.
Article in English | MEDLINE | ID: mdl-19326928

ABSTRACT

The electrochemical behavior of two mononuclear Mn(II) bis-terpyridine complexes, [Mn(II)(L)(2)](2+) (L = terpy (2,2':6',2''-terpyridine) and (t)Bu(3)-terpy (4,4',4''-tritert-butyl-2,2':6',2''-terpyridine)), has been investigated in dry CH(3)CN. Under these conditions, the cyclic voltammograms of these complexes exhibit not only the well-known Mn(II)/Mn(III) oxidation system but also a second metal-based oxidation one, corresponding to the Mn(III)/Mn(IV) redox couple. These oxidative processes are located at E(1/2) = +0.96 and +1.77 V vs Ag/Ag(+) (+1.26 and +2.07 V vs SCE) for the terpy complex and E(1/2) = +0.85 and +1.56 V vs Ag/Ag(+) (+1.15 and +1.86 V vs SCE) for the (t)Bu(3)-terpy derivative. The one-electron oxidized form of these complexes, [Mn(III)(L)(2)](3+), has been quantitatively generated by exhaustive electrolyses at E = 1.30 V, as previously observed in the case of the oxidation of [Mn(II)(tolyl-terpy)(2)](2+) (tolyl-terpy = 4'-(4-Methylphenyl)-2,2':6',2''-terpyridine) (Romain, S.; Duboc, C.; Neese, F.; Riviere, E.; Hanton, L. R.; Blackman, A. G.; Lepretre, J.-C.; Deronzier, A.; Collomb, M.-N. Chem.Eur. J. 2009, 15, 980-988). Further electrolyses at E = 1.65-1.80 V of [Mn(III)(L)(2)](3+) solutions have shown that the [Mn(IV)(L)(2)](4+) species is only stable for L = (t)Bu(3)-terpy because of the strong electron-donating properties of the tert-butyl substituents. These electrogenerated high-valent complexes are rare examples of mononuclear Mn(III) and Mn(IV) complexes stabilized solely by neutral N ligands. They have been fully characterized in solution by UV-visible and electron paramagnetic resonance (EPR) spectroscopies. A detailed investigation of the EPR spectra of the [Mn(II)((t)Bu(3)-terpy)(2)](2+) and [Mn(IV)((t)Bu(3)-terpy)(2)](4+) has allowed the determination of the spin Hamiltonian parameters for both systems (for Mn(II): |D| = 0.059 cm(-1); |E| = 0.014 cm(-1); E/D = 0.259; g(x) = g(y) = g(z) = 2.00 and for Mn(IV): |D| = 1.33(6) cm(-1); |E| = 0.36(4) cm(-1); E/D = 0.27; g(x) = 1.96(4); g(y) = 1.97(4); g(z) = 1.98(4)).


Subject(s)
Manganese/chemistry , Organometallic Compounds/chemistry , Pyridines/chemistry , Electrochemistry , Electron Spin Resonance Spectroscopy , Ligands , Spectrophotometry, Ultraviolet
13.
Chemistry ; 15(4): 980-8, 2009.
Article in English | MEDLINE | ID: mdl-19065688

ABSTRACT

The mononuclear manganese bis-terpyridine complex [Mn(tolyl-terpy)(2)](X)(3) (1(X)(3); X=BF(4), ClO(4), PF(6); tolyl-terpy=4'-(4-methylphenyl)-2,2':6',2"-terpyridine), containing Mn in the unusual +III oxidation state, has been isolated and characterised. The 1(3+) ion is a rare example of a mononuclear Mn(III) complex stabilised solely by neutral N ligands. Complex 1(3+) is obtained by electrochemical oxidation of the corresponding Mn(II) compound 1(2+) in anhydrous acetonitrile. Under these conditions the cyclic voltammogram of 1(2+) exhibits not only the well-known Mn(II)/Mn(III) oxidation at E(1/2)=+0.91 V versus Ag/Ag(+) (+1.21 V vs. SCE) but also a second metal-based oxidation process corresponding to Mn(III)/Mn(IV) at E(1/2)=+1.63 V (+1.93 V vs. SCE). Single crystals of 1(PF(6))(3)2 CH(3)CN were obtained by an electrocrystallisation procedure. X-ray analysis unambiguously revealed its tetragonally compressed octahedral geometry and high-spin character. The electronic properties of 1(3+) were investigated in detail by magnetic measurements and theoretical calculations, from which a D value of +4.82 cm(-1) was precisely determined. Density functional and complete active space self consistent field ab initio calculations both correctly predict a positive sign of D, in agreement with the compressed tetragonal distortion observed in the X-ray structure of 1(PF(6))(3)2 CH(3)CN. The different contributions to D were calculated, and the results show that 1) the spin-orbit coupling part (+2.593 cm(-1)) is predominant compared to the spin-spin interaction (+1.075 cm(-1)) and 2) the excited triplet states make the dominant contribution to the total D value.

14.
Dalton Trans ; (5): 658-66, 2008 Feb 07.
Article in English | MEDLINE | ID: mdl-18217122

ABSTRACT

A trinuclear [[Ru(II)(bpy)(2)(bpy-terpy)](2)Fe(II)](6+) complex (I) in which a Fe(II)-bis-terpyridine-like centre is covalently linked to two Ru(II)-tris-bipyridine-like moieties by a bridging bipyridine-terpyridine ligand has been synthesised and characterised. Its electrochemical, photophysical and photochemical properties have been investigated in CH(3)CN and compared with those of mononuclear model complexes. The cyclic voltammetry of (I) exhibits, in the positive region, two successive reversible oxidation processes, corresponding to the Fe(III)/Fe(II) and Ru(III)/Ru(II) redox couples. These systems are clearly separated (DeltaE(1/2) = 160 mV), demonstrating the lack of an electronic connection between the two subunits. The two oxidized forms of the complex, [[Ru(II)(bpy)(2)(bpy-terpy)](2)Fe(III)](7+) and [[Ru(III)(bpy)(2)(terpy-bpy)](2)Fe(III)](9+), obtained after two successive exhaustive electrolyses, are stable. (I) is poorly luminescent, indicating that the covalent linkage of the Ru(II)-tris-bipyridine to the Fe(II)-bis-terpyridine subunit leads to a strong quenching of the Ru(II)* excited state by energy transfer to the Fe(II) centre. Luminescence lifetime experiments show that the process occurs within 6 ns. The nature of the energy transfer process is discussed and an intramolecular energy exchange is proposed as a preferable deactivation pathway. Nevertheless this energy transfer can be efficiently quenched by an electron transfer process in the presence of a large excess of the 4-bromophenyl diazonium cation, playing the role of a sacrificial oxidant. Finally complete photoinduced oxidation of (I) has been performed by continuous photolysis experiments in the presence of a large excess of this sacrificial oxidant. The comparison with a mixture of the corresponding mononuclear model complexes has been made.

15.
Inorg Chem ; 46(7): 2735-43, 2007 Apr 02.
Article in English | MEDLINE | ID: mdl-17295479

ABSTRACT

In order to model the photoinduced electron-transfer reactions from the manganese cluster to the photoactive P680 chlorophylls in photosystem II, three heterohexanuclear complexes, [Mn2III,IVO2[RuII(bpy)2(Ln)]4]11+ [bpy = 2,2'-bipyridine, n = 2 (1a), 4 (1b), 6 (1c)], in which one MnIII,IV(micro-O)2 center is covalently linked to four RuII(bpy)3-like moieties by bridged bis(bipyridine) Ln ligands, have been synthesized and characterized. The electrochemical, photophysical, and photochemical properties of these complexes have been investigated in CH3CN. The cyclic voltammograms and rotating-disk electrode curves of the three complexes show the presence of two very close successive reversible oxidation processes corresponding to the Mn2III,IV/Mn2IV,IV and RuII/RuIII redox couples (estimated E1/2 approximately 0.82 and 0.90 V, respectively). The lower potential of the Mn2III,IV subunit compared to those of the RuII moieties indicates that the RuIII species can act as an efficient oxidant toward the Mn2III,IV core. The two oxidized forms of the complexes [Mn2IV,IVO2[RuII(bpy)2(Ln)]4]12+ (2a-c) and [Mn2IV,IVO2[RuIII(bpy)2(Ln)]4]16+ (3a-c) obtained in good yields (>90% for 2a-c and >85% for 3a-c) by sequential electrolyses are very stable. Photophysical studies show that the 3MLCT excited state of the Ru(bpy)3 centers is moderately quenched by the Mn2III,IV(micro-O)2 core (15-25% depending on the length of the bridging alkyl chain). Nevertheless, this energy transfer can be easily short-circuited in the presence of an external irreversible electron acceptor like the (4-bromophenyl)diazonium cation, by an electron transfer leading, in a stepwise fashion, to the stable one- and five-electron-oxidized species 2a-c and 3a-c, respectively, also in good yields, under continuous irradiation of the solutions. Electro- and photoinduced oxidation experiments have been followed by UV-visible and electron paramagnetic resonance spectroscopy.


Subject(s)
Electrons , Manganese/chemistry , Pyridines/chemistry , Ruthenium Compounds/chemistry , Electrochemistry , Molecular Structure , Oxidation-Reduction , Photochemistry , Ruthenium Compounds/chemical synthesis , Spectrum Analysis
16.
Dalton Trans ; (48): 5691-702, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17146534

ABSTRACT

Three heterotetranuclear complexes, [{Ru(II)(bpy)(2)(L(n))}(3)Mn(II)](8+) (bpy = 2,2'-bipyridine, n = 2, 4, 6), in which a Mn(II)-tris-bipyridine-like centre is covalently linked to three Ru(II)-tris-bipyridine-like moieties using bridging bis-bipyridine L(n) ligands, have been synthesised and characterised. The electrochemical, photophysical and photochemical properties of these complexes have been investigated in CH(3)CN. The cyclic voltammograms of the three complexes exhibit two successive very close one-electron metal-centred oxidation processes in the positive potential region. The first, which is irreversible, corresponds to the Mn(II)/Mn(III) redox system (E(pa) approximately 0.82 V vs Ag/Ag(+) 0.01 M in CH(3)CN-0.1 M Bu(4)NClO(4)), whereas the second which is, reversible, is associated with the Ru(II)/Ru(III) redox couple (E(1/2) approximately 0.91 V). In the negative potential region, three successive reversible four electron systems are observed, corresponding to ligand-based reduction processes. The three stable dimeric oxidized forms of the complexes, [Mn(2)(III,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](11+), [Mn(2)(IV,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](12+) and [Mn(2)(IV,IV)O(2){Ru(III)(bpy)(2)(L(n))}(4)](16+) are obtained in fairly good yields by sequential electrolyses after consumption of respectively 1.5, 0.5 and 3 electrons per molecule of initial tetranuclear complexes. The formation of the di-micro-oxo binuclear complexes are the result of the instability of the {[Ru(II)(bpy)(2)(L(n))](3)Mn(III)}(9+) species, which react with residual water, via a disproportionation reaction and the release of one ligand, [Ru(II)(bpy)(2)(L(n))](2+). A quantitative yield can be obtained for these reactions if the electrochemical oxidations are performed in the presence of an added external base like 2,6-dimethylpyridine. Photophysical properties of these compounds have been investigated showing that the luminescence of the Ru(II)-tris-bipyridine-like moieties is little affected by the presence of manganese within the tetranuclear complexes. A slight quenching of the excited states of the ruthenium moieties, which occurs by an intramolecular process, has been observed. Measurements made at low concentration (<1 x 10(-5) M) indicate that some decoordination of Mn(2+) arises in 1a-c. These measurements allow the calculation of the association constants for these complexes. Finally, photoinduced oxidation of the tetranuclear complexes has been performed by continuous photolysis experiments in the presence of a large excess of a diazonium salt, acting as a sacrificial oxidant. The three successive oxidation processes, Mn(II)--> Mn(III)Mn(IV), Mn(III)Mn(IV)--> Mn(IV)Mn(IV) and Ru(II)--> Ru(III) are thus obtained, the addition of 2,6-dimethylpyridine in the medium giving an essentially quantitative yield for the two first photo-induced oxidation steps as found for electrochemical oxidation.


Subject(s)
Manganese Compounds/chemistry , Organometallic Compounds/chemistry , Oxidants, Photochemical/chemistry , Ruthenium Compounds/chemistry , Electrochemistry , Electron Transport , Organometallic Compounds/chemical synthesis , Oxidants, Photochemical/chemical synthesis , Oxidation-Reduction , Photochemistry , Photons
17.
J Am Chem Soc ; 127(39): 13694-704, 2005 Oct 05.
Article in English | MEDLINE | ID: mdl-16190735

ABSTRACT

To examine the real ability of the binuclear di-mu-oxo complex [Mn2(III,IV)O2(terpy)2(H2O)2]3+ (2) to act as a catalyst for water oxidation, we have investigated in detail its redox properties and that of its mononuclear precursor complex [Mn(II)(terpy)2]2+ (1) in aqueous solution. It appears that electrochemical oxidation of 1 allows the quantitative formation of 2 and, most importantly, that electrochemical oxidation of 2 quantitatively yields the stable tetranuclear Mn(IV) complex, [Mn4(IV)O5(terpy)4(H2O)2]6+ (4), having a linear mono-mu-oxo{Mn2(mu-oxo)2}2 core. Therefore, these results show that the electrochemical oxidation of 2 in aqueous solution is only a one-electron process leading to 4 via the formation of a mono-mu-oxo bridge between two oxidized [Mn2(IV,IV)O2(terpy)2(H2O)2]4+ species. 4 is also quantitatively formed by dissolution of the binuclear complex [Mn2(IV,IV)O2(terpy)2(SO4)2] (3) in aqueous solutions. Evidence of this work is that 4 is stable in aqueous solutions, and even if it is a good synthetic analogue of the "dimers-of-dimers" model compound of the OEC in PSII, this complex is not able to oxidize water. As a consequence, since 4 results from an one-electron oxidation of 2, 2 cannot act as an efficient homogeneous electrocatalyst for water oxidation. This work demonstrates that a simple oxidation of 2 cannot produce molecular oxygen without the help of an oxygen donor.

18.
Chemistry ; 8(5): 1196-204, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11891908

ABSTRACT

Peroxoiron species have been proposed to be involved in catalytic cycles of iron-dependent oxygenases and in some cases as the active intermediates during oxygen-transfer reactions. The catalytic properties of a mononuclear iron complex, [Fe(II)(pb)(2)(CH(3)CN)(2)] (pb=(-)4,5-pinene-2,2'-bipyridine), have been compared to those of its related dinuclear analogue. Each system generates specific peroxo adducts, which are responsible for the oxidation of sulfides to sulfoxides. The dinuclear catalyst was found to be more reactive and (enantio)selective than its mononuclear counterpart, suggesting that a second metal site affords specific advantages for stereoselective catalysis. These results might help for the design of future enantioselective iron catalysts.


Subject(s)
Hydrogen Peroxide/chemistry , Iron/chemistry , Sulfides/chemistry , Catalysis , Kinetics , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Stereoisomerism , Sulfoxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...