Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(9): e0200769, 2018.
Article in English | MEDLINE | ID: mdl-30192754

ABSTRACT

TP53 is the most mutated gene in all cancers. The mutant protein also accumulates in cells. The high frequency of p53 mutations makes the protein a promising target for anti-cancer therapy. Only a few molecules have been found, using in vitro screening, to reactivate the mutant protein. APR-246 is currently the most successful mutant p53 activator, which reactivates the transcriptional activity of p53 by covalently binding to C124 of the protein. We have recently created in silico models of G245S-mp53 in its apo and DNA-bound forms. In this paper we further report on our in silico screening for potential activators of G245S-mp53. We filtered the ZINC15 database (13 million compounds) to only include drug-like molecules with moderate to standard reactivity. Our filtered database of 130,000 compounds was screened using the DOCKTITE protocol in the Molecular Operating Environment software. We performed covalent docking at C124 of G245S-mp53 to identify potential activators of the mutant protein. The docked compounds were ranked using a consensus scoring approach. We also used ADMET Predictor™ to predict pharmacokinetics and the possible toxicities of the compounds. Our screening procedure has identified compounds, mostly thiosemicarbazones and halo-carbonyls, with the best potential as G245S-mp53 activators, which are described in this work. Based on its binding scores and ADMET risk score, compound 2 is likely to have the best potential as a G245S-mp53 activator compared to the other top hits.


Subject(s)
Models, Genetic , Mutation , Tumor Suppressor Protein p53/genetics , Computer Simulation , Humans , Neoplasms/genetics
2.
Molecules ; 22(8)2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28813011

ABSTRACT

The transcription factor p53 is a potent tumor suppressor dubbed as the "guardian of the genome" because of its ability to orchestrate protective biological outputs in response to a variety of oncogenic stresses. Mutation and thus inactivation of p53 can be found in 50% of human tumors. The majority are missense mutations located in the DNA binding region. Among them, G245S is known to be a structural hotspot mutation. To understand the behaviors and differences between the wild-type and mutant, both a dimer of the wild type p53 (wt-p53) and its G245S mutant (G245S-mp53), complexed with DNA, were simulated using molecular dynamics for more than 1 µs. wt-p53 and G245S-mp53 apo monomers were simulated for 1 µs as well. Conformational analyses and binding energy evaluations performed underline important differences and therefore provide insights to understand the G245S-mp53 loss of function. Our results indicate that the G245S mutation destabilizes several structural regions in the protein that are crucial for DNA binding when found in its apo form and highlight differences in the mutant-DNA complex structure compared to the wt protein. These findings not only provide means that can be applied to other p53 mutants but also serve as structural basis for further studies aimed at the development of cancer therapies based on restoring the function of p53.


Subject(s)
DNA-Binding Proteins/chemistry , DNA/chemistry , Structure-Activity Relationship , Tumor Suppressor Protein p53/chemistry , Apoptosis/genetics , Cell Line, Tumor , DNA/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Molecular Dynamics Simulation , Point Mutation/genetics , Protein Binding , Transcriptional Activation/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...