ABSTRACT
Venoms are a rich source for the discovery of molecules with biotechnological applications, but their analysis is challenging even for state-of-the-art proteomics. Here we report on a large-scale proteomic assessment of the venom of Loxosceles intermedia, the so-called brown spider. Venom was extracted from 200 spiders and fractioned into two aliquots relative to a 10 kDa cutoff mass. Each of these was further fractioned and digested with trypsin (4 h), trypsin (18 h), pepsin (18 h), and chymotrypsin (18 h), then analyzed by MudPIT on an LTQ-Orbitrap XL ETD mass spectrometer fragmenting precursors by CID, HCD, and ETD. Aliquots of undigested samples were also analyzed. Our experimental design allowed us to apply spectral networks, thus enabling us to obtain meta-contig assemblies, and consequently de novo sequencing of practically complete proteins, culminating in a deep proteome assessment of the venom. Data are available via ProteomeXchange, with identifier PXD005523.
Subject(s)
Proteome , Spider Venoms/chemistry , Spiders , Animals , Mass Spectrometry , Peptide Hydrolases , ProteomicsABSTRACT
Brazilian ethanol fermentation process commonly uses baker's yeast as inoculum. In recent years, wild type yeast strains have been widely adopted. The two more successful examples are PE-2 and CAT-1, currently employed in Brazilian distilleries. In the present study, we analyzed how these strains compete for nutrients in the same environment and compared the potential characteristics which affect their performance by applying quantitative proteomics methods. Through the use of isobaric tagging, it was possible to compare protein abundances between both strains during the fermentation process. Our results revealed a better fermentation performance and robustness of CAT-1 strain. The proteomic results demonstrated many possible features that may be linked to the improved fermentation traits of the CAT-1. Proteins involved in response to oxidative stress (Sod1 and Trx1) and trehalose synthesis (Tps3) were more abundant in CAT-1 than in PE-2 after a fermentation batch. Tolerance to oxidative stress and trehalose accumulation were subsequently demonstrated to be enhanced for CAT-1, corroborating the comparative proteomic results. The importance of trehalose and the antioxidant system was confirmed by using mutant stains deleted in Sod1, Trx1 or Tps3. These deletions impaired fermentation performance, strengthening the idea that the abilities of accumulating high levels of trehalose and coping with oxidative stress are crucial for improving fermentation. SIGNIFICANCE: The importance of the present works emerges from the necessity to better understand the peculiar biological features from two important bioethanol industrial strains of Saccharomyces cerevisiae during batch fermentation. We applied an iTRAQ-based quantitative proteomics analysis to compare these two important strains during batch fermentation and identified possible features involved in the fermentation performance. The results provided by this work will serve as an initial framework for future investigations on the biology of both strains.
Subject(s)
Ethanol/metabolism , Fermentation , Saccharomyces cerevisiae Proteins/analysis , Brazil , Oxidative Stress , Proteomics/methods , Saccharomyces cerevisiae/chemistry , TrehaloseABSTRACT
UNLABELLED: Tarantula spiders, Theraphosidae family, are spread throughout most tropical regions of the world. Despite their size and reputation, there are few reports of accidents. However, like other spiders, their venom is considered a remarkable source of toxins, which have been selected through millions of years of evolution. The present work provides a proteomic overview of the fascinating complexity of the venomous extract of the Grammostola iheringi tarantula, obtained by electrical stimulation of the chelicerae. For analysis a bottom-up proteomic approach Multidimensional Protein Identification Technology (MudPIT) was used. Based on bioinformatics analyses, PepExplorer, a similarity-driven search tool that identifies proteins based on phylogenetically close organisms, a total of 395 proteins were identified in this venomous extract. Most of the identifications (~70%) were classified as predicted (21%), hypothetical (6%) and putative (37%), while a small group (6%) had no predicted function. Identified molecules matched with neurotoxins that act on ions channels; proteases, such as serine proteases, metalloproteinases, cysteine proteinases, aspartic proteinases, carboxypeptidases and cysteine-rich secretory enzymes (CRISP) and some molecules with unknown target. Additionally, non-classical venom proteins were also identified. Up to now, this study represents, to date, the first broad characterization of the composition of G. iheringi venomous extract. Our data provides a tantalizing insight into the diversity of proteins in this venom and their biotechnological potential. SIGNIFICANCE: Animal venoms contain a diversity of molecules able to bind to specific cell targets. Due to their biochemical and physiological properties, these molecules are interesting for medical and biotechnological purposes. In this study, a large number of components of the venomous extract of the spider Grammostola iheringi were identified by the MudPIT technique. It was demonstrated that this approach is a sensitive and adequate method to achieve a broad spectrum of information about animal venoms. Using this bottom-up proteomic method, classical and non-classical venom proteins were identified which stimulate new interest in the systematic research of their protein components.
Subject(s)
Arthropod Proteins/metabolism , Proteomics , Spider Venoms/metabolism , Spiders/metabolism , AnimalsABSTRACT
PatternLab for proteomics is an integrated computational environment that unifies several previously published modules for the analysis of shotgun proteomic data. The contained modules allow for formatting of sequence databases, peptide spectrum matching, statistical filtering and data organization, extracting quantitative information from label-free and chemically labeled data, and analyzing statistics for differential proteomics. PatternLab also has modules to perform similarity-driven studies with de novo sequencing data, to evaluate time-course experiments and to highlight the biological significance of data with regard to the Gene Ontology database. The PatternLab for proteomics 4.0 package brings together all of these modules in a self-contained software environment, which allows for complete proteomic data analysis and the display of results in a variety of graphical formats. All updates to PatternLab, including new features, have been previously tested on millions of mass spectra. PatternLab is easy to install, and it is freely available from http://patternlabforproteomics.org.