Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34884932

ABSTRACT

Acetyl-CoA carboxylase (ACC) is the first enzyme regulating de novo lipid synthesis via the carboxylation of acetyl-CoA into malonyl-CoA. The inhibition of its activity decreases lipogenesis and, in parallel, increases the acetyl-CoA content, which serves as a substrate for protein acetylation. Several findings support a role for acetylation signaling in coordinating signaling systems that drive platelet cytoskeletal changes and aggregation. Therefore, we investigated the impact of ACC inhibition on tubulin acetylation and platelet functions. Human platelets were incubated 2 h with CP640.186, a pharmacological ACC inhibitor, prior to thrombin stimulation. We have herein demonstrated that CP640.186 treatment does not affect overall platelet lipid content, yet it is associated with increased tubulin acetylation levels, both at the basal state and after thrombin stimulation. This resulted in impaired platelet aggregation. Similar results were obtained using human platelets that were pretreated with tubacin, an inhibitor of tubulin deacetylase HDAC6. In addition, both ACC and HDAC6 inhibitions block key platelet cytoskeleton signaling events, including Rac1 GTPase activation and the phosphorylation of its downstream effector, p21-activated kinase 2 (PAK2). However, neither CP640.186 nor tubacin affects thrombin-induced actin cytoskeleton remodeling, while ACC inhibition results in decreased thrombin-induced reactive oxygen species (ROS) production and extracellular signal-regulated kinase (ERK) phosphorylation. We conclude that when using washed human platelets, ACC inhibition limits tubulin deacetylation upon thrombin stimulation, which in turn impairs platelet aggregation. The mechanism involves a downregulation of the Rac1/PAK2 pathway, being independent of actin cytoskeleton.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Platelet Aggregation/drug effects , Thrombin/pharmacology , Tubulin/metabolism , Acetyl-CoA Carboxylase/metabolism , Acetylation , Actin Cytoskeleton/metabolism , Blood Platelets/drug effects , Blood Platelets/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Lipid Metabolism/drug effects , Microtubules/drug effects , Microtubules/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Phosphorylation/drug effects , Reactive Oxygen Species/metabolism , Thrombin/metabolism , p21-Activated Kinases/metabolism , rac1 GTP-Binding Protein/metabolism
2.
JACC Basic Transl Sci ; 4(5): 596-610, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31768476

ABSTRACT

Adenosine monophosphate-activated protein kinase (AMPK) acetyl-CoA carboxylase (ACC) signaling is activated in platelets by atherogenic lipids, particularly by oxidized low-density lipoproteins, through a CD36-dependent pathway. More interestingly, increased platelet AMPK-induced ACC phosphorylation is associated with the severity of coronary artery calcification as well as acute coronary events in coronary artery disease patients. Therefore, AMPK-induced ACC phosphorylation is a potential marker for risk stratification in suspected coronary artery disease patients. The inhibition of ACC resulting from its phosphorylation impacts platelet lipid content by down-regulating triglycerides, which in turn may affect platelet function.

3.
Blood ; 132(11): 1180-1192, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30018077

ABSTRACT

AMP-activated protein kinase (AMPK) α1 is activated in platelets on thrombin or collagen stimulation, and as a consequence, phosphorylates and inhibits acetyl-CoA carboxylase (ACC). Because ACC is crucial for the synthesis of fatty acids, which are essential for platelet activation, we hypothesized that this enzyme plays a central regulatory role in platelet function. To investigate this, we used a double knock-in (DKI) mouse model in which the AMPK phosphorylation sites Ser79 on ACC1 and Ser212 on ACC2 were mutated to prevent AMPK signaling to ACC. Suppression of ACC phosphorylation promoted injury-induced arterial thrombosis in vivo and enhanced thrombus growth ex vivo on collagen-coated surfaces under flow. After collagen stimulation, loss of AMPK-ACC signaling was associated with amplified thromboxane generation and dense granule secretion. ACC DKI platelets had increased arachidonic acid-containing phosphatidylethanolamine plasmalogen lipids. In conclusion, AMPK-ACC signaling is coupled to the control of thrombosis by specifically modulating thromboxane and granule release in response to collagen. It appears to achieve this by increasing platelet phospholipid content required for the generation of arachidonic acid, a key mediator of platelet activation.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/metabolism , Blood Platelets/enzymology , Signal Transduction , Thrombosis/enzymology , AMP-Activated Protein Kinases/genetics , Acetyl-CoA Carboxylase/genetics , Animals , Blood Platelets/pathology , Gene Knock-In Techniques , Mice , Mice, Knockout , Phosphorylation/genetics , Thrombosis/genetics , Thrombosis/pathology
4.
Eur J Cardiothorac Surg ; 49(5): 1348-53, 2016 May.
Article in English | MEDLINE | ID: mdl-26604296

ABSTRACT

OBJECTIVES: Cardiac transplantation using hearts from donors after circulatory death (DCD) is critically limited by the unavoidable warm ischaemia and its related unpredictable graft function. Inasmuch as hypothermic machine perfusion (MP) has been shown to improve heart preservation, we hypothesized that MP could enable the use of DCD hearts for transplantation. METHODS: We recovered 16 pig hearts following anoxia-induced cardiac arrest and cardioplegia. Grafts were randomly assigned to two different groups of 4-h preservation using either static cold storage (CS) or MP (Modified LifePort© System, Organ Recovery Systems©, Itasca, Il). After preservation, the grafts were reperfused ex vivo using the Langendorff method for 60 min. Energetic charge was quantified at baseline, post-preservation and post-reperfusion by measuring lactate and high-energy phosphate levels. Left ventricular contractility parameters were assessed both in vivo prior to ischaemia and ex vivo during reperfusion. RESULTS: Following preservation, the hearts that were preserved using CS exhibited higher lactate levels (57.1 ± 23.7 vs 21.4 ± 12.2 µmol/g; P < 0.001), increased adenosine monophosphate/adenosine triphosphate ratio (0.53 ± 0.25 vs 0.11 ± 0.11; P < 0.001) and lower phosphocreatine/creatine ratio (9.7 ± 5.3 vs 25.2 ± 11; P < 0.001) in comparison with the MP hearts. Coronary flow was similar in both groups during reperfusion (107 ± 9 vs 125 ± 9 ml/100 g/min heart; P = ns). Contractility decreased in the CS group, yet remained well preserved in the MP group. CONCLUSION: MP preservation of DCD hearts results in improved preservation of the energy and improved functional recovery of heart grafts compared with CS.


Subject(s)
Heart Transplantation , Heart/physiology , Hypothermia, Induced , Myocardial Reperfusion , Tissue Preservation/methods , Tissue Preservation/statistics & numerical data , Transplants/physiology , Animals , Hypothermia, Induced/methods , Hypothermia, Induced/statistics & numerical data , Models, Cardiovascular , Myocardial Reperfusion/methods , Myocardial Reperfusion/statistics & numerical data , Shock , Swine , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL
...