Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Biomed Opt ; 26(2)2021 02.
Article in English | MEDLINE | ID: mdl-33624457

ABSTRACT

SIGNIFICANCE: Current imaging paradigms for differential diagnosis of suspicious breast lesions suffer from high false positive rates that force patients to undergo unnecessary biopsies. Diffuse optical spectroscopic imaging (DOSI) noninvasively probes functional hemodynamic and compositional parameters in deep tissue and has been shown to be sensitive to contrast between normal and malignant tissues. AIM: DOSI methods are under investigation as an adjunct to mammography and ultrasound that could reduce false positive rates and unnecessary biopsies, particularly in radiographically dense breasts. METHODS: We performed a retrospective analysis of 212 subjects with suspicious breast lesions who underwent DOSI imaging. Physiological tissue parameters were z-score normalized to the patient's contralateral breast tissue and input to univariate logistic regression models to discriminate between malignant tumors and the surrounding normal tissue. The models were then used to differentiate malignant lesions from benign lesions. RESULTS: Models incorporating several individual hemodynamic parameters were able to accurately distinguish malignant tumors from both the surrounding background tissue and benign lesions with area under the curve (AUC) ≥0.85. Z-score normalization improved the discriminatory ability and calibration of these predictive models relative to unnormalized or ratio-normalized data. CONCLUSIONS: Findings from a large subject population study show how DOSI data normalization that accounts for normal tissue heterogeneity and quantitative statistical regression approaches can be combined to improve the ability of DOSI to diagnose malignant lesions. This improved diagnostic accuracy, combined with the modality's inherent logistical advantages of portability, low cost, and nonionizing radiation, could position DOSI as an effective adjunct modality that could be used to reduce the number of unnecessary invasive biopsies.


Subject(s)
Breast Neoplasms , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Diagnosis, Differential , Female , Humans , Mammography , Retrospective Studies , Spectrum Analysis
2.
Breast Cancer Res ; 22(1): 29, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32169100

ABSTRACT

BACKGROUND: Breast cancer patients with early-stage disease are increasingly administered neoadjuvant chemotherapy (NAC) to downstage their tumors prior to surgery. In this setting, approximately 31% of patients fail to respond to therapy. This demonstrates the need for techniques capable of providing personalized feedback about treatment response at the earliest stages of therapy to identify patients likely to benefit from changing treatment. Diffuse optical spectroscopic imaging (DOSI) has emerged as a promising functional imaging technique for NAC monitoring. DOSI uses non-ionizing near-infrared light to provide non-invasive measures of absolute concentrations of tissue chromophores such as oxyhemoglobin. In 2011, we reported a new DOSI prognostic marker, oxyhemoglobin flare: a transient increase in oxyhemoglobin capable of discriminating NAC responders within the first day of treatment. In this follow-up study, DOSI was used to confirm the presence of the flare as well as to investigate whether DOSI markers of NAC response are regimen dependent. METHODS: This dual-center study examined 54 breast tumors receiving NAC measured with DOSI before therapy and the first week following chemotherapy administration. Patients were treated with either a standard of care maximum tolerated dose (MTD) regimen or an investigational metronomic (MET) regimen. Changes in tumor chromophores were tracked throughout the first week and compared to pathologic response and treatment regimen at specific days utilizing generalized estimating equations (GEE). RESULTS: Within patients receiving MTD therapy, the oxyhemoglobin flare was confirmed as a prognostic DOSI marker for response appearing as soon as day 1 with post hoc GEE analysis demonstrating a difference of 48.77% between responders and non-responders (p < 0.0001). Flare was not observed in patients receiving MET therapy. Within all responding patients, the specific treatment was a significant predictor of day 1 changes in oxyhemoglobin, showing a difference of 39.45% (p = 0.0010) between patients receiving MTD and MET regimens. CONCLUSIONS: DOSI optical biomarkers are differentially sensitive to MTD and MET regimens at early timepoints suggesting the specific treatment regimen should be considered in future DOSI studies. Additionally, DOSI may help to identify regimen-specific responses in a more personalized manner, potentially providing critical feedback necessary to implement adaptive changes to the treatment strategy.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/pathology , Hemodynamics/drug effects , Neoadjuvant Therapy/methods , Optical Imaging/methods , Spectroscopy, Near-Infrared/methods , Administration, Metronomic , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Female , Humans , Maximum Tolerated Dose , Middle Aged , Treatment Outcome
4.
J Biomed Opt ; 24(5): 1-8, 2019 05.
Article in English | MEDLINE | ID: mdl-31124346

ABSTRACT

Relatively few imaging and sensing technologies are employed to study human lactation physiology. In particular, human mammary development during pregnancy as well as mammary involution after lactation have been poorly described, despite their importance for breast cancer diagnosis and treatment during these phases. Our case study shows the potential of diffuse optical spectroscopic imaging (DOSI) to uniquely study the spatiotemporal changes in mammary tissue composition during the involution of the lactating breast toward its pre-pregnant state. At nine time intervals over a period of eight months after the cessation of breastfeeding, we reconstructed 2-D maps of mammary water content, lipid content, total hemoglobin (THb) concentration, oxygen saturation (StO2), and tissue optical scattering. Mammary lipid content in the nonareolar region showed a significant relative increase of 59%, whereas water content and THb concentration showed a significant relative decrease of 50% and 48%, respectively. Significant changes were also found in StO2 and tissue optical scattering. Our findings are consistent with the gradual replacement of fibroglandular tissue by adipose tissue and vascular regression during mammary involution. Moreover, our data provide unique insight into the dynamics of breast tissue composition and demonstrate the effectiveness of DOSI as a technique to study human lactation physiology.


Subject(s)
Breast/diagnostic imaging , Breast/physiology , Lactation/physiology , Optical Imaging/methods , Adult , Breast Feeding , Female , Hemoglobins/analysis , Humans , Image Processing, Computer-Assisted , Lipids/chemistry , Magnetic Resonance Imaging , Oxygen/metabolism , Patient Safety , Scattering, Radiation , Spectrophotometry
5.
J Biomed Opt ; 24(2): 1-11, 2018 10.
Article in English | MEDLINE | ID: mdl-30338678

ABSTRACT

Ideally, neoadjuvant chemotherapy (NAC) assessment should predict pathologic complete response (pCR), a surrogate clinical endpoint for 5-year survival, as early as possible during typical 3- to 6-month breast cancer treatments. We introduce and demonstrate an approach for predicting pCR within 10 days of initiating NAC. The method uses a bedside diffuse optical spectroscopic imaging (DOSI) technology and logistic regression modeling. Tumor and normal tissue physiological properties were measured longitudinally throughout the course of NAC in 33 patients enrolled in the American College of Radiology Imaging Network multicenter breast cancer DOSI trial (ACRIN-6691). An image analysis scheme, employing z-score normalization to healthy tissue, produced models with robust predictions. Notably, logistic regression based on z-score normalization using only tissue oxygen saturation (StO2) measured within 10 days of the initial therapy dose was found to be a significant predictor of pCR (AUC = 0.92; 95% CI: 0.82 to 1). This observation suggests that patients who show rapid convergence of tumor tissue StO2 to surrounding tissue StO2 are more likely to achieve pCR. This early predictor of pCR occurs prior to reductions in tumor size and could enable dynamic feedback for optimization of chemotherapy strategies in breast cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Chemotherapy, Adjuvant/methods , Neoadjuvant Therapy , Oxygen Consumption/physiology , Spectroscopy, Near-Infrared/methods , Adult , Biomarkers/metabolism , Breast Neoplasms/metabolism , Female , Humans , Logistic Models , Middle Aged , Point-of-Care Testing , ROC Curve , Survival Analysis
6.
Lasers Med Sci ; 32(8): 1737-1746, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28653257

ABSTRACT

Skin flap grafting is a form of transplantation widely used in plastic surgery. However, ischemia/reperfusion injury is the main factor which reduces the survival rate of flaps following grafting. We investigated whether photobiomodulation (PBM) precondition prior to human adipose-derived stromal cell (hASC) spheroid (PBM-spheroid) transplantation improved skin tissue functional recovery by the stimulation of angiogenesis and tissue regeneration in skin flap of mice. The LED had an emission wavelength peaked at 660 ± 20 nm (6 J/cm2, 10 mW/cm2). The expression of angiogenic growth factors in PBM-spheroid hASCs was much greater than that of not-PBM-treated spheroid or monolayer-cultured hASCs. From immunochemical staining analysis, the hASCs of PBM-spheroid were CD31+, KDR+, and CD34+, whereas monolayer-cultured hASCs were negative for these markers. To evaluate the therapeutic effect of hASC PBM-spheroid in vivo, PBS, monolayer-cultured hASCs, and not-PBM-spheroid were transplanted into a skin flap model. The animals were observed for 14 days. The PBM-spheroid hASCs transplanted into the skin flap ischemia differentiated into endothelial cells and remained differentiated. Transplantation of PBM-spheroid hASCs into the skin flap ischemia significantly elevated the density of vascular formations through angiogenic factors released by the skin flap ischemia and enhanced tissue regeneration at the lesion site. Consistent with these results, the transplantation of PBM-spheroid hASCs significantly improved functional recovery compared with PBS, monolayer-cultured hASCs, and not-PBM-spheroid treatment. These findings suggest that transplantation of PBM-spheroid hASCs may be an effective stem cell therapy for the treatment of skin flap ischemia.


Subject(s)
Adipose Tissue/cytology , Ischemia/therapy , Low-Level Light Therapy , Regeneration/radiation effects , Skin/blood supply , Spheroids, Cellular/cytology , Stem Cells/cytology , Surgical Flaps/blood supply , Animals , Cell Differentiation/radiation effects , Cell Survival/radiation effects , Disease Models, Animal , Endothelial Cells/cytology , Endothelial Cells/radiation effects , Epithelial Cells/cytology , Epithelial Cells/radiation effects , Humans , Ischemia/pathology , Mice , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/radiation effects , Neovascularization, Physiologic/radiation effects , Skin/pathology , Spheroids, Cellular/radiation effects , Stem Cell Transplantation , Stem Cells/radiation effects , Wound Healing
7.
J Biomed Opt ; 22(4): 45003, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28384703

ABSTRACT

Diffuse optical spectroscopic imaging (DOSI) and diffuse correlation spectroscopy (DCS) are model-based near-infrared (NIR) methods that measure tissue optical properties (broadband absorption, ? a , and reduced scattering, ? s ? ) and blood flow (blood flow index, BFI), respectively. DOSI-derived ? a values are used to determine composition by calculating the tissue concentration of oxy- and deoxyhemoglobin ( HbO 2 , HbR), water, and lipid. We developed and evaluated a combined, coregistered DOSI/DCS handheld probe for mapping and imaging these parameters. We show that uncertainties of 0.3 ?? mm ? 1 (37%) in ? s ? and 0.003 ?? mm ? 1 (33%) in ? a lead to ? 53 % and 9% errors in BFI, respectively. DOSI/DCS imaging of a solid tissue-simulating flow phantom and


Subject(s)
Carcinoma, Ductal, Breast/blood supply , Carcinoma, Ductal, Breast/diagnostic imaging , Spectrophotometry/methods , Spectroscopy, Near-Infrared/methods , Tomography, Optical/methods , Adult , Carcinoma, Ductal, Breast/drug therapy , Diffusion , Female , Hemoglobins/analysis , Humans , Lipids/blood , Models, Theoretical , Neoadjuvant Therapy , Oxyhemoglobins/analysis , Phantoms, Imaging
8.
J Biomed Opt ; 22(12): 121604, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29389104

ABSTRACT

We present a framework for characterizing the performance of an experimental imaging technology, diffuse optical spectroscopic imaging (DOSI), in a 2-year multicenter American College of Radiology Imaging Network (ACRIN) breast cancer study (ACRIN-6691). DOSI instruments combine broadband frequency-domain photon migration with time-independent near-infrared (650 to 1000 nm) spectroscopy to measure tissue absorption and reduced scattering spectra and tissue hemoglobin, water, and lipid composition. The goal of ACRIN-6691 was to test the effectiveness of optically derived imaging endpoints in predicting the final pathologic response of neoadjuvant chemotherapy (NAC). Sixty patients were enrolled over a 2-year period at participating sites and received multiple DOSI scans prior to and during 3- to 6-month NAC. The impact of three sources of error on accuracy and precision, including different operators, instruments, and calibration standards, was evaluated using a broadband reflectance standard and two different solid tissue-simulating optical phantoms. Instruments showed <0.0010 mm−1 (10.3%) and 0.06 mm−1 (4.7%) deviation in broadband absorption and reduced scattering, respectively, over the 2-year duration of ACRIN-6691. These variations establish a useful performance criterion for assessing instrument stability. The proposed procedures and tests are not limited to DOSI; rather, they are intended to provide methods to characterize performance of any instrument used in translational optical imaging.


Subject(s)
Breast Neoplasms/diagnostic imaging , Optical Imaging/methods , Spectroscopy, Near-Infrared/methods , Breast Neoplasms/drug therapy , Chemotherapy, Adjuvant , Clinical Trials as Topic , Drug Monitoring/instrumentation , Drug Monitoring/methods , Equipment Design , Female , Humans , Optical Imaging/instrumentation , Phantoms, Imaging , Spectroscopy, Near-Infrared/instrumentation
9.
Cancer Res ; 76(20): 5933-5944, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27527559

ABSTRACT

The prospective multicenter ACRIN 6691 trial was designed to evaluate whether changes from baseline to mid-therapy in a diffuse optical spectroscopic imaging (DOSI)-derived imaging endpoint, the tissue optical index (TOI), predict pathologic complete response (pCR) in women undergoing breast cancer neoadjuvant chemotherapy (NAC). DOSI instruments were constructed at the University of California, Irvine (Irvine, CA), and delivered to six institutions where 60 subjects with newly diagnosed breast tumors (at least 2 cm in the longest dimension) were enrolled over a 2-year period. Bedside DOSI images of the tissue concentrations of deoxy-hemoglobin (ctHHb), oxy-hemoglobin (ctHbO2), water (ctH2O), lipid, and TOI (ctHHb × ctH2O/lipid) were acquired on both breasts up to four times during NAC treatment: baseline, 1-week, mid-point, and completion. Of the 34 subjects (mean age 48.4 ± 10.7 years) with complete, evaluable data from both normal and tumor-containing breast, 10 (29%) achieved pCR as determined by central pathology review. The percent change in tumor-to-normal TOI ratio (%TOITN) from baseline to mid-therapy ranged from -82% to 321%, with a median of -36%. Using pCR as the reference standard and ROC curve methodology, %TOITN AUC was 0.60 (95% CI, 0.39-0.81). In the cohort of 17 patients with baseline tumor oxygen saturation (%StO2) greater than the 77% population median, %TOITN AUC improved to 0.83 (95% CI, 0.63-1.00). We conclude that the combination of baseline functional properties and dynamic optical response shows promise for clinical outcome prediction. Cancer Res; 76(20); 5933-44. ©2016 AACR.


Subject(s)
Breast Neoplasms/drug therapy , Spectroscopy, Near-Infrared/methods , Adult , Aged , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Chemotherapy, Adjuvant , Female , Hemoglobins/metabolism , Humans , Logistic Models , Middle Aged , Neoadjuvant Therapy , Prospective Studies , ROC Curve
10.
J Biomed Opt ; 21(7): 74001, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27436049

ABSTRACT

Young patients with dense breasts have a relatively low-positive biopsy rate for breast cancer (∼1 in 7). South Korean women have higher breast density than Westerners. We investigated the benefit of using a functional and metabolic imaging technique, diffuse optical spectroscopic imaging (DOSI), to help the standard of care imaging tools to distinguish benign from malignant lesions in premenopausal Korean women. DOSI uses near-infrared light to measure breast tissue composition by quantifying tissue concentrations of water (ctH2O), bulk lipid (ctLipid), deoxygenated (ctHHb), and oxygenated (ctHbO2) hemoglobin. DOSI spectral signatures specific to abnormal tissue and absent in healthy tissue were also used to form a malignancy index. This study included 19 premenopausal subjects (average age 41±9), corresponding to 11 benign and 10 malignant lesions. Elevated lesion to normal ratio of ctH2O, ctHHb, ctHbO2, total hemoglobin (THb=ctHHb+ctHbO2), and tissue optical index (ctHHb×ctH2O/ctLipid) were observed in the malignant lesions compared to the benign lesions (p<0.02). THb and malignancy index were the two best single predictors of malignancy, with >90% sensitivity and specificity. Malignant lesions showed significantly higher metabolism and perfusion than benign lesions. DOSI spectral features showed high discriminatory power for distinguishing malignant and benign lesions in dense breasts of the Korean population.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Optical Imaging/instrumentation , Adult , Diagnosis, Differential , Female , Humans , Middle Aged , Republic of Korea , Sensitivity and Specificity , Spectroscopy, Near-Infrared
11.
Breast Cancer Res ; 15(5): R89, 2013.
Article in English | MEDLINE | ID: mdl-24066941

ABSTRACT

INTRODUCTION: Radiographic density adversely affects the performance of X-ray mammography and can be particularly problematic in younger and high-risk women. Because of this limitation, there is significant ongoing effort to develop alternative cancer screening and detection strategies for this population. This pilot study evaluates the potential of Diffuse Optical Spectroscopic Imaging (DOSI) to image known tumors in dense breast tissue. METHODS: We performed a retrospective analysis on 24 radiographically dense breast cancer subjects measured with DOSI over a four-year period (Breast Imaging Reporting and Data System - BI-RADS, category 3 and 4, average age = 39 ± 7.6, average maximum size 31 ± 1 7 mm). Two previously-described DOSI contrast functions, the tissue optical index (TOI) and the specific tumor component (STC), which are based upon the concentrations and spectral signatures of hemoglobin, water and lipids, respectively, were used to form 2D optical images of breast tumors. RESULTS: Using TOI and STC, 21 out of 24 breast tumors were found to be statistically different from the surrounding highly vascularized dense tissue and to be distinguishable from the areolar region. For these patients, the tumor to normal contrast was 2.6 ± 1.2 (range 1.3 to 5.5) and 10.0 ± 7.5 (range 3.3 to 26.4) for TOI and STC, respectively. STC images were particularly useful in eliminating metabolic background from the retroareolar region which led to identification of two out of four retroareolar tumors. CONCLUSIONS: Using both the abundance and the disposition of the tissue chromophores recovered from the DOSI measurements, we were able to observe tumor contrast relative to dense breast tissue. These preliminary results suggest that DOSI spectral characterization strategies may provide new information content that could help imaging breast tumors in radiographically dense tissue and in particular in the areolar complex.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Mammary Glands, Human/abnormalities , Optical Imaging/methods , Adult , Breast Density , Female , Humans , Mammography , Optical Imaging/instrumentation , Retrospective Studies , Risk Factors
12.
Breast Cancer Res ; 15(1): R14, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23433249

ABSTRACT

INTRODUCTION: In addition to being a risk factor for breast cancer, breast density has been hypothesized to be a surrogate biomarker for predicting response to endocrine-based chemotherapies. The purpose of this study was to evaluate whether a noninvasive bedside scanner based on diffuse optical spectroscopic imaging (DOSI) provides quantitative metrics to measure and track changes in breast tissue composition and density. To access a broad range of densities in a limited patient population, we performed optical measurements on the contralateral normal breast of patients before and during neoadjuvant chemotherapy (NAC). In this work, DOSI parameters, including tissue hemoglobin, water, and lipid concentrations, were obtained and correlated with magnetic resonance imaging (MRI)-measured fibroglandular tissue density. We evaluated how DOSI could be used to assess breast density while gaining new insight into the impact of chemotherapy on breast tissue. METHODS: This was a retrospective study of 28 volunteers undergoing NAC treatment for breast cancer. Both 3.0-T MRI and broadband DOSI (650 to 1,000 nm) were obtained from the contralateral normal breast before and during NAC. Longitudinal DOSI measurements were used to calculate breast tissue concentrations of oxygenated and deoxygenated hemoglobin, water, and lipid. These values were compared with MRI-measured fibroglandular density before and during therapy. RESULTS: Water (r = 0.843; P < 0.001), deoxyhemoglobin (r = 0.785; P = 0.003), and lipid (r = -0.707; P = 0.010) concentration measured with DOSI correlated strongly with MRI-measured density before therapy. Mean DOSI parameters differed significantly between pre- and postmenopausal subjects at baseline (water, P < 0.001; deoxyhemoglobin, P = 0.024; lipid, P = 0.006). During NAC treatment measured at about 90 days, significant reductions were observed in oxyhemoglobin for pre- (-20.0%; 95% confidence interval (CI), -32.7 to -7.4) and postmenopausal subjects (-20.1%; 95% CI, -31.4 to -8.8), and water concentration for premenopausal subjects (-11.9%; 95% CI, -17.1 to -6.7) compared with baseline. Lipid increased slightly in premenopausal subjects (3.8%; 95% CI, 1.1 to 6.5), and water increased slightly in postmenopausal subjects (4.4%; 95% CI, 0.1 to 8.6). Percentage change in water at the end of therapy compared with baseline correlated strongly with percentage change in MRI-measured density (r = 0.864; P = 0.012). CONCLUSIONS: DOSI functional measurements correlate with MRI fibroglandular density, both before therapy and during NAC. Although from a limited patient dataset, these results suggest that DOSI may provide new functional indices of density based on hemoglobin and water that could be used at the bedside to assess response to therapy and evaluate disease risk.


Subject(s)
Breast Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Mammary Glands, Human/abnormalities , Optical Imaging , Adult , Aged , Breast Density , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Humans , Middle Aged , Neoadjuvant Therapy , Premenopause , Radiography , Retrospective Studies
13.
Cancer Res ; 72(17): 4318-28, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22777823

ABSTRACT

Tissue hemoglobin oxygen saturation (i.e., oxygenation) is a functional imaging endpoint that can reveal variations in tissue hypoxia, which may be predictive of pathologic response in subjects undergoing neoadjuvant chemotherapy. In this study, we used diffuse optical spectroscopic imaging (DOSI) to measure concentrations of oxyhemoglobin (ctO(2)Hb), deoxy-hemoglobin (ctHHb), total Hb (ctTHb = ctO(2)Hb + ctHHb), and oxygen saturation (stO(2) = ctO(2)Hb/ctTHb) in tumor and contralateral normal tissue from 41 patients with locally advanced primary breast cancer. Measurements were acquired before the start of neoadjuvant chemotherapy. Optically derived parameters were analyzed separately and in combination with clinical biomarkers to evaluate correlations with pathologic response. Discriminant analysis was conducted to determine the ability of optical and clinical biomarkers to classify subjects into response groups. Twelve (28.6%) of 42 tumors achieved pathologic complete response (pCR) and 30 (71.4%) were non-pCR. Tumor measurements in pCR subjects had higher stO(2) levels (median 77.8%) than those in non-pCR individuals (median 72.3%, P = 0.01). There were no significant differences in baseline ctO(2)Hb, ctHHb, and ctTHb between response groups. An optimal tumor oxygenation threshold of stO(2) = 76.7% was determined for pCR versus non-pCR (sensitivity = 75.0%, specificity = 73.3%). Multivariate discriminant analysis combining estrogen receptor staining and stO(2) further improved the classification of pCR versus non-pCR (sensitivity = 100%, specificity = 85.7%). These results show that elevated baseline tumor stO(2) are correlated with a pCR. Noninvasive DOSI scans combined with histopathology subtyping may aid in stratification of individual patients with breast cancer before neoadjuvant chemotherapy.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Neoadjuvant Therapy , Oxygen Consumption , Adult , Biomarkers/metabolism , Breast Neoplasms/diagnosis , Chemotherapy, Adjuvant , Female , Hemoglobins/metabolism , Humans , Middle Aged , Neoplasm Grading , Neoplasm Staging , Positron-Emission Tomography , ROC Curve , Treatment Outcome
14.
J Biomed Opt ; 16(11): 116019, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22112124

ABSTRACT

We previously developed a self-referencing differential spectroscopic (SRDS) method to detect lesions by identifying a spectroscopic biomarker of breast cancer, i.e., the specific tumor component (STC). The SRDS method is based on the assumption of the exclusive presence of this spectroscopic biomaker in malignant disease. Although clinical results using this method have already been published, the dependence of the STC spectra on the choice of reference tissue has not yet been addressed. In this study, we explore the impact of the selection of the reference region size and location on the STC spectrum in 10 subjects with malignant breast tumors. Referencing from both contralateral and ipsilateral sides was performed. Regardless of the referencing, we are able to obtain consistent high contrast images of malignant lesions using the STC with less than 13% deviation. These results suggest that the STC measurements are independent of any type, location, and amount of normal breast tissue used for referencing. This confirms the initial assumption of the SRDS analysis, that there are specific tumor components in cancer that do not exist in normal tissue. This also indicates that bilateral measurements are not required for lesion identification using the STC method.


Subject(s)
Breast Neoplasms/diagnosis , Image Processing, Computer-Assisted/methods , Spectroscopy, Near-Infrared/methods , Adult , Breast/anatomy & histology , Breast Neoplasms/chemistry , Breast Neoplasms/pathology , Female , Humans , Light , Middle Aged , Scattering, Radiation
15.
J Biomed Opt ; 16(9): 097007, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21950942

ABSTRACT

We describe an algorithm to calculate an index that characterizes spatial differences in broadband near-infrared [(NIR), 650-1000 nm] absorption spectra of tumor-containing breast tissue. Patient-specific tumor spatial heterogeneities are visualized through a heterogeneity spectrum function (HS). HS is a biomarker that can be attributed to different molecular distributions within the tumor. To classify lesion heterogeneities, we built a heterogeneity index (HI) derived from the HS by weighing the HS in specific NIR absorption bands. It is shown that neoadjuvant chemotherapy (NAC) response is potentially related to the tumor heterogeneity. Therefore, we correlate the heterogeneity index obtained prior to treatment with the final response to NAC. From a pilot study of 15 cancer patients treated with NAC, pathological complete responders (pCR) were separated from non-pCR according to their HI (-44 ± 12 and 43 ± 17, p = 3 × 10(-8), respectively). We conclude that the HS function is a biomarker that can be used to visualize spatial heterogeneities in lesions, and the baseline HI prior to therapy correlates with chemotherapy pathological response.


Subject(s)
Algorithms , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Spectroscopy, Near-Infrared/methods , Adult , Aged , Biomarkers, Tumor/chemistry , Breast Neoplasms/chemistry , Chemotherapy, Adjuvant , Female , Humans , Middle Aged , Neoadjuvant Therapy , Pilot Projects , Predictive Value of Tests , Prognosis , Treatment Outcome
16.
Biomed Opt Express ; 2(4): 1007-20, 2011 Mar 30.
Article in English | MEDLINE | ID: mdl-21483622

ABSTRACT

Using scatterplots of 2 or 3 parameters, diffuse optical tomography and fluorescence imaging are combined to improve detectability of breast lesions. Small or low contrast phantom-lesions that were missed in the optical and fluorescence images were detected in the scatterplots. In patient measurements, all tumors were visible and easily differentiated from artifacts and areolas in the scatterplots. The different rate of intake and wash out of the fluorescent contrast agent in the healthy versus malignant tissues was also observed in the scatterplot: this information can be used to discriminate malignant lesion from normal structures.

17.
Mol Imaging Biol ; 11(2): 64-70, 2009.
Article in English | MEDLINE | ID: mdl-19030937

ABSTRACT

PURPOSE: The purpose of this study was to validate a newly developed diffuse optical tomography (DOT) system on benign cysts in the breast. PROCEDURES: Eight patients with 20 benign cysts were included. Study procedures consisted of optical breast imaging and breast magnetic resonance imaging (MRI) for comparison. A reconstruction algorithm computed three-dimensional images for each of the four near-infrared wavelengths used by our DOT system (Philips Healthcare, Best, The Netherlands). These images were combined using a spectroscopic model to assess tissue composition and lesion size. RESULTS: Twenty cysts were analyzed in eight patients. By using the spectroscopic information, 13 of 20 cysts (65%) were visualized with DOT, confirming their high water and low total hemoglobin content. Lesion size and location showed good agreement with MRI; Pearson correlation coefficient was 0.7 (p < 0.01). CONCLUSIONS: DOT can visualize benign cysts in the breast and elucidate their high water and low total hemoglobin content by spectroscopic analysis.


Subject(s)
Breast Cyst/diagnosis , Breast/pathology , Imaging, Three-Dimensional/methods , Tomography, Optical/methods , Adult , Algorithms , Breast Cyst/pathology , Female , Hemoglobins/analysis , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Reproducibility of Results , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...