Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 33(19): 4052-4068.e6, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37659415

ABSTRACT

The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Brassicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To evaluate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moderate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology.


Subject(s)
Arabidopsis , Brassicaceae , Phylogeny , Brassicaceae/genetics , Arabidopsis/genetics , Biodiversity
2.
PhytoKeys ; 152: 27-104, 2020.
Article in English | MEDLINE | ID: mdl-32733134

ABSTRACT

Close scrutiny of Goodenia (Goodeniaceae) and allied genera in the 'Core Goodeniaceae' over recent years has clarified our understanding of this captivating group. While expanded sampling, sequencing of multiple regions, and a genome skimming reinforced backbone clearly supported Goodenia s.l. as monophyletic and distinct from Scaevola and Coopernookia, there appears to be no synapomorphic characters that uniquely characterise this morphologically diverse clade. Within Goodenia s.l., there is strong support from nuclear, chloroplast and mitochondrial data for three major clades (Goodenia Clades A, B and C) and various subclades, which lead to earlier suggestions for the possible recognition of these as distinct genera. Through ongoing work, it has become evident that this is impractical, as conflict remains within the most recently diverged Clade C, likely due to recent radiation and incomplete lineage sorting. In light of this, it is proposed that a combination of morphological characters is used to circumscribe an expanded Goodenia that now includes Velleia, Verreauxia, Selliera and Pentaptilon, and an updated infrageneric classification is proposed to accommodate monophyletic subclades. A total of twenty-five new combinations, three reinstatements, and seven new names are published herein including Goodenia subg. Monochila sect. Monochila subsect. Infracta K.A.Sheph. subsect. nov. Also, a type is designated for Goodenia subg. Porphyranthus sect. Ebracteolatae (K.Krause) K.A.Sheph. comb. et stat. nov., and lectotypes or secondstep lectotypes are designated for a further three names.

3.
PLoS One ; 14(9): e0222696, 2019.
Article in English | MEDLINE | ID: mdl-31536564

ABSTRACT

Paterson's curse (Echium plantagineum L. (Boraginaceae)), is an herbaceous annual native to Western Europe and northwest Africa. It has been recorded in Australia since the 1800's and is now a major weed in pastures and rangelands, but its introduction history is poorly understood. An understanding of its invasion pathway and subsequent genetic structure is critical to the successful introduction of biological control agents and for provision of informed decisions for plant biosecurity efforts. We sampled E. plantagineum in its native (Iberian Peninsula), non-native (UK) and invaded ranges (Australia and South Africa) and analysed three chloroplast gene regions. Considerable genetic diversity was found among E. plantagineum in Australia, suggesting a complex introduction history. Fourteen haplotypes were identified globally, 10 of which were co-present in Australia and South Africa, indicating South Africa as an important source population, likely through contamination of traded goods or livestock. Haplotype 4 was most abundant in Australia (43%), and in historical and contemporary UK populations (80%), but scarce elsewhere (< 17%), suggesting that ornamental and/or other introductions from genetically impoverished UK sources were also important. Collectively, genetic evidence and historical records indicate E. plantagineum in southern Australia exists as an admixture that is likely derived from introduced source populations in both the UK and South Africa.


Subject(s)
Echium/genetics , Plant Weeds/genetics , Europe , Genetic Variation/genetics , Haplotypes/genetics , Introduced Species , South Africa , South Australia
5.
Sci Rep ; 7: 42792, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28211478

ABSTRACT

Echium plantagineum and E. vulgare are congeneric exotics first introduced to Australia in the early 1800 s. There, E. plantagineum is now highly invasive, whereas E. vulgare has a limited distribution. Studies were conducted to evaluate distribution, ecology, genetics and secondary chemistry to shed light on factors associated with their respective invasive success. When sampled across geographically diverse locales, E. plantagineum was widespread and exhibited a small genome size (1 C = 0.34 pg), an annual life cycle, and greater genetic diversity as assessed by DNA sequence analysis. It was found frequently in areas with temperature extremes and low rainfall. In contrast, E. vulgare exhibited a larger genome size (1 C = 0.43 pg), a perennial lifecycle, less chloroplast genetic diversity, and occurred in areas with lower temperatures and higher rainfall. Twelve chloroplast haplotypes of E. plantagineum were evident and incidence aligned well with reported historical introduction events. In contrast, E. vulgare exhibited two haplotypes and was found only sporadically at higher elevations. Echium plantagineum possessed significantly higher levels of numerous pyrrolizidine alkaloids involved in plant defence. We conclude that elevated genetic diversity, tolerance to environmental stress and capacity for producing defensive secondary metabolites have contributed to the successful invasion of E. plantagineum in Australia.


Subject(s)
Echium/classification , Echium/growth & development , Genetic Variation , Sequence Analysis, DNA/methods , Australia , Echium/genetics , Ecological and Environmental Phenomena , Genome Size , Genome, Plant , Haplotypes , Introduced Species , Life Cycle Stages , Population Dynamics , Stress, Physiological
6.
Biology (Basel) ; 2(2): 481-513, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-24832795

ABSTRACT

A general prediction of ecological theory is that climate change will favor invasive nonindigenous plant species (NIPS) over native species. However, the relative fitness advantage enjoyed by NIPS is often affected by resource limitation and potentially by extreme climatic events such as drought. Genetic constraints may also limit the ability of NIPS to adapt to changing climatic conditions. In this study, we investigated evidence for potential NIPS advantage under climate change in two sympatric perennial stipoid grasses from southeast Australia, the NIPS Nassella neesiana and the native Austrostipa bigeniculata. We compared the growth and reproduction of both species under current and year 2050 drought, temperature and CO2 regimes in a multifactor outdoor climate simulation experiment, hypothesizing that NIPS advantage would be higher under more favorable growing conditions. We also compared the quantitative variation and heritability of growth traits in populations of both species collected along a 200 km climatic transect. In contrast to our hypothesis we found that the NIPS N. neesiana was less responsive than A. bigeniculata to winter warming but maintained higher reproductive output during spring drought. However, overall tussock expansion was far more rapid in N. neesiana, and so it maintained an overall fitness advantage over A. bigeniculata in all climate regimes. N. neesiana also exhibited similar or lower quantitative variation and growth trait heritability than A. bigeniculata within populations but greater variability among populations, probably reflecting a complex past introduction history. We found some evidence that additional spring warmth increases the impact of drought on reproduction but not that elevated atmospheric CO2 ameliorates drought severity. Overall, we conclude that NIPS advantage under climate change may be limited by a lack of responsiveness to key climatic drivers, reduced genetic variability in range-edge populations, and complex drought-CO2 interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...