Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(1): 108759, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38261932

ABSTRACT

While fruit flies (Drosophila melanogaster) and humans exhibit immune system dysfunction in space, studies examining their immune systems' interactions with natural parasites in space are lacking. Drosophila parasitoid wasps modify blood cell function to suppress host immunity. In this study, naive and parasitized ground and space flies from a tumor-free control and a blood tumor-bearing mutant strain were examined. Inflammation-related genes were activated in space in both fly strains. Whereas control flies did not develop tumors, tumor burden increased in the space-returned tumor-bearing mutants. Surprisingly, control flies were more sensitive to spaceflight than mutant flies; many of their essential genes were downregulated. Parasitoids appeared more resilient than fly hosts, and spaceflight did not significantly impact wasp survival or the expression of their virulence genes. Previously undocumented mutant wasps with novel wing color and wing shape were isolated post-flight and will be invaluable for host-parasite studies on Earth.

2.
Life Sci Space Res (Amst) ; 24: 18-24, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31987476

ABSTRACT

We report the results of the EcAMSat (Escherichia coli Antimicrobial Satellite) autonomous space flight experiment, investigating the role of σs in the development of antibiotic resistance in uropathogenic E. coli (UPEC) in microgravity (µ-g). The presence of σs, encoded by the rpoS gene, has been shown to increase antibiotic resistance in Earth gravity, but it was unknown if this effect occurs in µ-g. Two strains, wildtype (WT) UPEC and its isogenic ΔrpoS mutant, were grown to stationary phase aboard EcAMSat, an 11-kg small satellite, and in a parallel ground-based control experiment; cell growth rates for the two strains were found to be unaltered by µ-g. After starvation for over 24 h, stationary-phase cells were incubated with three doses of gentamicin (Gm), a common treatment for urinary tract infections (which have been reported in astronauts). Cellular metabolic activity was measured optically using the redox-based indicator alamarBlue (aB): both strains exhibited slower metabolism in µ-g, consistent with results from previous smallsat missions. The results also showed that µ-g did not enhance UPEC resistance to Gm; in fact, both strains were more susceptible to Gm in µ-g. It was also found, via a second ground-control experiment, that multi-week storage in the payload hardware stressed the cells, potentially obscuring small differential effects of the antibiotic between WT and mutant and/or between µ-g and ground. Overall, results showed that the ∆rpoS mutant was 34-37% less metabolically active than the WT for four different sets of conditions: ground without Gm, ground with Gm; µ-g without Gm, µ-g with Gm. We conclude therefore that the rpoS gene and its downstream products are important therapeutic targets for treating bacterial infections in space, much as they are on the ground.


Subject(s)
Bacterial Proteins/physiology , Drug Resistance, Bacterial , Sigma Factor/physiology , Uropathogenic Escherichia coli/drug effects , Weightlessness , Anti-Bacterial Agents/pharmacology , Space Flight , Uropathogenic Escherichia coli/growth & development , Uropathogenic Escherichia coli/physiology
3.
Life Sci Space Res (Amst) ; 15: 1-10, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29198308

ABSTRACT

Human immune response is compromised and bacteria can become more antibiotic resistant in space microgravity (MG). We report that under low-shear modeled microgravity (LSMMG), stationary-phase uropathogenic Escherichia coli (UPEC) become more resistant to gentamicin (Gm), and that this increase is dependent on the presence of σs (a transcription regulator encoded by the rpoS gene). UPEC causes urinary tract infections (UTIs), reported to afflict astronauts; Gm is a standard treatment, so these findings could impact astronaut health. Because LSMMG findings can differ from MG, we report preparations to examine UPEC's Gm sensitivity during spaceflight using the E. coli Anti-Microbial Satellite (EcAMSat) as a free-flying "nanosatellite" in low Earth orbit. Within EcAMSat's payload, a 48-microwell fluidic card contains and supports study of bacterial cultures at constant temperature; optical absorbance changes in cell suspensions are made at three wavelengths for each microwell and a fluid-delivery system provides growth medium and predefined Gm concentrations. Performance characterization is reported here for spaceflight prototypes of this payload system. Using conventional microtiter plates, we show that Alamar Blue (AB) absorbance changes can assess the Gm effect on E. coli viability, permitting telemetric transfer of the spaceflight data to Earth. Laboratory results using payload prototypes are consistent with wellplate and flask findings of differential sensitivity of UPEC and its ∆rpoS strain to Gm. if σs plays the same role in space MG as in LSMMG and Earth gravity, countermeasures discovered in recent Earth studies (aimed at weakening the UPEC antioxidant defense) to control UPEC infections would prove useful also in space flights. Further, EcAMSat results should clarify inconsistencies from previous space experiments on bacterial antibiotic sensitivity and other issues.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Gentamicins/pharmacology , Sigma Factor/genetics , Uropathogenic Escherichia coli/growth & development , Weightlessness , Cell Survival/drug effects , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Humans , Microbial Viability , Mutation , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/genetics
4.
PLoS One ; 12(9): e0183480, 2017.
Article in English | MEDLINE | ID: mdl-28877184

ABSTRACT

The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment.


Subject(s)
Gene Expression Regulation , Multiplex Polymerase Chain Reaction/methods , RNA/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Spacecraft , Weightlessness , Animals , Escherichia coli/genetics , Freeze Drying , Liver/metabolism , Mice , RNA/genetics , Reproducibility of Results
5.
PLoS One ; 6(1): e15361, 2011 Jan 11.
Article in English | MEDLINE | ID: mdl-21264297

ABSTRACT

Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.


Subject(s)
Drosophila melanogaster/immunology , Immunity, Innate , Space Flight , Animals , Drosophila melanogaster/microbiology , Escherichia coli/immunology , Escherichia coli Infections/immunology , Female , Gene Expression Profiling , Male , Signal Transduction/genetics , Signal Transduction/immunology , Weightlessness/adverse effects
6.
J Toxicol Environ Health A ; 73(9): 623-6, 2010.
Article in English | MEDLINE | ID: mdl-20391141

ABSTRACT

One of NASA's long-term objectives is to be able to stay on the moon for extended periods, and to provide a stepping-stone for future Mars explorations. The lunar soil simulant JSC-1 has been developed by NASA from volcanic ash found in Arizona to facilitate testing of toxicity and system requirements for lunar exploration. A concentration-response study of JSC-1 was undertaken on the murine macrophage cell line RAW 264.7. Results demonstrated concentrations of 50-2000 microg/ml JSC-1 induced enhanced expression of inducible nitric oxide synthase (iNOS). Data suggest that extraterrestrial regolith has the potential to induce an inflammatory response, and that future development of anti-inflammatory mitigative strategies may be necessary to counteract lunar dust-associated cellular toxicity.


Subject(s)
Cosmic Dust/adverse effects , Macrophages/drug effects , Nitric Oxide Synthase Type II/drug effects , Animals , Cell Line , Computer Simulation , Enzyme Induction , Macrophages/enzymology , Mice , Moon , Nitric Oxide Synthase Type II/metabolism , Space Flight
SELECTION OF CITATIONS
SEARCH DETAIL
...