Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Nanotechnol ; 16(12): 1349-1354, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34675412

ABSTRACT

The engineering of the energy dispersion of polaritons in microcavities through nanofabrication or through the exploitation of intrinsic material and cavity anisotropies has demonstrated many intriguing effects related to topology and emergent gauge fields such as the anomalous quantum Hall and Rashba effects. Here we show how we can obtain different Berry curvature distributions of polariton bands in a strongly coupled organic-inorganic two-dimensional perovskite single-crystal microcavity. The spatial anisotropy of the perovskite crystal combined with photonic spin-orbit coupling produce two Hamilton diabolical points in the dispersion. An external magnetic field breaks time-reversal symmetry owing to the exciton Zeeman splitting and lifts the degeneracy of the diabolical points. As a result, the bands possess non-zero integral Berry curvatures, which we directly measure by state tomography. In addition to the determination of the different Berry curvatures of the multimode microcavity dispersions, we can also modify the Berry curvature distribution, the so-called band geometry, within each band by tuning external parameters, such as temperature, magnetic field and sample thickness.

3.
Phys Rev Lett ; 126(17): 173901, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33988433

ABSTRACT

In ultrafast multimode lasers, mode locking is implemented by means of saturable absorbers or modulators, allowing for very short pulses. This occurs because of nonlinear interactions of modes with well equispaced frequencies. Though theory predicts that, in the absence of any device, mode locking would occur in random lasers, this has never been demonstrated so far. Through the analysis of multimode correlations we provide clear evidence for nonlinear mode coupling in random lasers. The behavior of multiresonance intensity correlations is tested against the nonlinear frequency matching condition equivalent to the one underlying phase locking in ordered ultrafast lasers. Nontrivially large correlations are clearly observed for spatially overlapping resonances that sensitively depend on the frequency matching condition to be satisfied, eventually demonstrating the occurrence of nonlinear mode-locked mode coupling. This is the first example, to our knowledge, of an experimental realization of self-starting mode locking in random lasers, allowing for many new developments in the design and use of nanostructured devices.

4.
ACS Nano ; 15(1): 650-664, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33350811

ABSTRACT

Excitonic coupling, electronic coupling, and cooperative interactions in self-assembled lead halide perovskite nanocrystals were reported to give rise to a red-shifted collective emission peak with accelerated dynamics. Here we report that similar spectroscopic features could appear as a result of the nanocrystal reactivity within the self-assembled superlattices. This is demonstrated by studying CsPbBr3 nanocrystal superlattices over time with room-temperature and cryogenic micro-photoluminescence spectroscopy, X-ray diffraction, and electron microscopy. It is shown that a gradual contraction of the superlattices and subsequent coalescence of the nanocrystals occurs over several days of keeping such structures under vacuum. As a result, a narrow, low-energy emission peak is observed at 4 K with a concomitant shortening of the photoluminescence lifetime due to the energy transfer between nanocrystals. When exposed to air, self-assembled CsPbBr3 nanocrystals develop bulk-like CsPbBr3 particles on top of the superlattices. At 4 K, these particles produce a distribution of narrow, low-energy emission peaks with short lifetimes and excitation fluence-dependent, oscillatory decays. Overall, the aging of CsPbBr3 nanocrystal assemblies dramatically alters their emission properties and that should not be overlooked when studying collective optoelectronic phenomena nor confused with superfluorescence effects.

5.
Nano Lett ; 20(5): 3506-3512, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32251601

ABSTRACT

Machine learning software applications are ubiquitous in many fields of science and society for their outstanding capability to solve computationally vast problems like the recognition of patterns and regularities in big data sets. In spite of these impressive achievements, such processors are still based on the so-called von Neumann architecture, which is a bottleneck for faster and power-efficient neuromorphic computation. Therefore, one of the main goals of research is to conceive physical realizations of artificial neural networks capable of performing fully parallel and ultrafast operations. Here we show that lattices of exciton-polariton condensates accomplish neuromorphic computing with outstanding accuracy thanks to their high optical nonlinearity. We demonstrate that our neural network significantly increases the recognition efficiency compared with the linear classification algorithms on one of the most widely used benchmarks, the MNIST problem, showing a concrete advantage from the integration of optical systems in neural network architectures.

6.
Nat Commun ; 9(1): 1467, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29654228

ABSTRACT

Quantum vortices, the quantized version of classical vortices, play a prominent role in superfluid and superconductor phase transitions. However, their exploration at a particle level in open quantum systems has gained considerable attention only recently. Here we study vortex pair interactions in a resonant polariton fluid created in a solid-state microcavity. By tracking the vortices on picosecond time scales, we reveal the role of nonlinearity, as well as of density and phase gradients, in driving their rotational dynamics. Such effects are also responsible for the split of composite spin-vortex molecules into elementary half-vortices, when seeding opposite vorticity between the two spinorial components. Remarkably, we also observe that vortices placed in close proximity experience a pull-push scenario leading to unusual scattering-like events that can be described by a tunable effective potential. Understanding vortex interactions can be useful in quantum hydrodynamics and in the development of vortex-based lattices, gyroscopes, and logic devices.

7.
Light Sci Appl ; 6(2): e16212, 2017 Feb.
Article in English | MEDLINE | ID: mdl-30167229

ABSTRACT

The strong coupling of an excitonic transition with an electromagnetic mode results in composite quasi-particles called exciton polaritons, which have been shown to combine the best properties of their individual components in semiconductor microcavities. However, the physics and applications of polariton flows in organic materials and at room temperature are still unexplored because of the poor photon confinement in such structures. Here, we demonstrate that polaritons formed by the hybridization of organic excitons with a Bloch surface wave are able to propagate for hundreds of microns showing remarkable third-order nonlinear interactions upon high injection density. These findings pave the way for the study of organic nonlinear light-matter fluxes and for a technologically promising route of the realization of dissipation-less on-chip polariton devices operating at room temperature.

8.
Chem Commun (Camb) ; 50(97): 15297-300, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25051118

ABSTRACT

Manganese blue is a synthetic barium manganate(VI) sulphate compound that was produced from 1935 to the 1990s and was used both as a blue pigment in works of art and by conservators in the restoration of paintings. The photophysical properties of the compound are described as well as the setup needed to record the spatial distribution of the pigment in works of art.


Subject(s)
Barium/chemistry , Coloring Agents/chemistry , Manganese/chemistry , Sulfates/chemistry , Luminescence , Spectrophotometry, Ultraviolet
9.
Opt Lett ; 39(7): 2068-71, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24686676

ABSTRACT

Polaritons are hybrid light-matter quasi-particles that have gathered a significant attention for their capability of showing room temperature and out-of-equilibrium Bose-Einstein condensation. More recently, a novel class of ultrafast optical devices have been realized by using flows of polariton fluids, such as switches, interferometers, and logical gates. However, polariton lifetimes and propagation distances are strongly limited by photon losses and accessible in-plane momenta in normal microcavity samples. In this work, we show experimental evidence of the formation of room temperature propagating polariton states arising from the strong coupling between organic excitons and a Bloch surface wave. This result, which was only recently predicted, paves the way for the realization of polariton devices that could allow lossless propagation up to macroscopic distances.

SELECTION OF CITATIONS
SEARCH DETAIL
...