Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5785, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987244

ABSTRACT

Chloroaluminate ionic liquids selectively transform (waste) polyolefins into gasoline-range alkanes through tandem cracking-alkylation at temperatures below 100 °C. Further improvement of this process necessitates a deep understanding of the nature of the catalytically active species and the correlated performance in the catalyzing critical reactions for the tandem polyolefin deconstruction with isoalkanes at low temperatures. Here, we address this requirement by determining the nuclearity of the chloroaluminate ions and their interactions with reaction intermediates, combining in situ 27Al magic-angle spinning nuclear magnetic resonance spectroscopy, in situ Raman spectroscopy, Al K-edge X-ray absorption near edge structure spectroscopy, and catalytic activity measurement. Cracking and alkylation are facilitated by carbenium ions initiated by AlCl3-tert-butyl chloride (TBC) adducts, which are formed by the dissociation of Al2Cl7- in the presence of TBC. The carbenium ions activate the alkane polymer strands and advance the alkylation cycle through multiple hydride transfer reactions. In situ 1H NMR and operando infrared spectroscopy demonstrate that the cracking and alkylation processes occur synchronously; alkenes formed during cracking are rapidly incorporated into the carbenium ion-mediated alkylation cycle. The conclusions are further supported by ab initio molecular dynamics simulations coupled with an enhanced sampling method, and model experiments using n-hexadecane as a feed.

2.
J Am Chem Soc ; 146(26): 17847-17853, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888888

ABSTRACT

In the presence of water, hydronium ions formed within the micropores of zeolite H-BEA significantly influence the surrounding environment and the reactivity of organic substrates. The positive charge of these ions, coupled with the zeolite's negatively charged framework, results in an ionic environment that causes a strongly nonideal solvation behavior of cyclohexanol. This leads to a significantly higher excess chemical potential in the initial state and stabilizes at the same time the charged transition state in the dehydration of cyclohexanol. As a result, the free-energy barrier of the reaction is lowered, leading to a marked increase in the reaction rates. Nonetheless, there is a limit to the reaction rate enhancement by the hydronium ion concentration. Experiments conducted with low concentrations of reactants show that beyond an optimal concentration, the required spatial rearrangement between hydronium ions and cyclohexanols inhibits further increases in the reaction rate, leading to a peak in the intrinsic activity of hydronium ions. The quantification of excess chemical potential in both initial and transition states for zeolites H-BEA, along with findings from HMFI, provides a basis to generalize and predict rates for hydronium-ion-catalyzed dehydration reactions in Brønsted zeolites.

3.
J Am Chem Soc ; 146(20): 13949-13961, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739624

ABSTRACT

Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon-carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer-Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low. Mechanistically, the first H addition to the carbonyl O of an adsorbed benzaldehyde molecule leads to a surface-bound hydroxy intermediate. The hydroxy intermediate then undergoes a second and rate-determining H addition to its α-C to form benzyl alcohol. The H additions occur predominantly via the proton-coupled electron transfer mechanism. In a parallel reaction, the radical α-C of the hydroxy intermediate attacks the electrophilic carbonyl C of a physisorbed benzaldehyde molecule to form the C-C bond, which is rate-determining. The C-C coupling is accompanied by the protonation of the formed alkoxy radical intermediate, coupled with electron transfer from the surface of Cu, to form hydrobenzoin.

4.
J Am Chem Soc ; 146(12): 8630-8640, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38488522

ABSTRACT

H2S reforming of methane (HRM) provides a potential strategy to directly utilize sour natural gas for the production of COx-free H2 and sulfur chemicals. Several carbon allotropes were found to be active and selective for HRM, while the additional presence of transition metals led to further rate enhancements and outstanding stability (e.g., Ru supported on carbon black). Most metals are transformed to sulfides, but the carbon supports prevent sintering under the harsh reaction conditions. Supported by theoretical calculations, kinetic and isotopic investigations with representative catalysts showed that H2S decomposition and the recombination of surface H atoms are quasi-equilibrated, while the first C-H bond scission is the kinetically relevant step. Theory and experiments jointly establish that dynamically formed surface sulfur dimers are responsible for methane activation and catalytic turnovers on sulfide and carbon surfaces that are otherwise inert without reaction-derived active sites.

5.
Angew Chem Int Ed Engl ; 63(17): e202319580, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38433092

ABSTRACT

Transforming polyolefin waste into liquid alkanes through tandem cracking-alkylation reactions catalyzed by Lewis-acid chlorides offers an efficient route for single-step plastic upcycling. Lewis acids in dichloromethane establish a polar environment that stabilizes carbenium ion intermediates and catalyzes hydride transfer, enabling breaking of polyethylene C-C bonds and forming C-C bonds in alkylation. Here, we show that efficient and selective deconstruction of low-density polyethylene (LDPE) to liquid alkanes is achieved with anhydrous aluminum chloride (AlCl3) and gallium chloride (GaCl3). Already at 60 °C, complete LDPE conversion was achieved, while maintaining the selectivity for gasoline-range liquid alkanes over 70 %. AlCl3 showed an exceptional conversion rate of 5000 g L D P E m o l c a t - 1 h - 1 ${{{\rm g}}_{{\rm L}{\rm D}{\rm P}{\rm E}}{{\rm \ }{\rm m}{\rm o}{\rm l}}_{{\rm c}{\rm a}{\rm t}}^{-1}{{\rm \ }{\rm h}}^{-1}}$ , surpassing other Lewis acid catalysts by two orders of magnitude. Through kinetic and mechanistic studies, we show that the rates of LDPE conversion do not correlate directly with the intrinsic strength of the Lewis acids or steric constraints that may limit the polymer to access the Lewis acid sites. Instead, the rates for the tandem processes of cracking and alkylation are primarily governed by the rates of initiation of carbenium ions and the subsequent intermolecular hydride transfer. Both jointly control the relative rates of cracking and alkylation, thereby determining the overall conversion and selectivity.

6.
Angew Chem Int Ed Engl ; 63(9): e202317339, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38085966

ABSTRACT

CeO2 nanorod based catalysts for the base-free synthesis of azoxy-aromatics via transfer hydrogenation of nitroarenes with ethanol as hydrogen donor have been synthesized and investigated. The oxygen vacancies (Ov ) and base sites are critical for their excellent catalytic properties. The Ov , i.e., undercoordinated Ce cations, serve as the sites to activate ethanol and nitroarenes by lowering the energy barrier to transfer hydrogen from α-Csp3 -H in ethanol to the nitro group coupling it to the redox reactions between Ce3+ and Ce4+ . At the same time, the base sites catalyze the condensation step to selectively produce azoxy-aromatics. The catalytic route opens a much improved way to use non-noble metal oxides without additives for the selective functional group reduction and coupling reactions.

7.
JACS Au ; 3(9): 2487-2497, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37772176

ABSTRACT

In situ Al K-edge X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS) spectroscopy in conjunction with ab initio molecular dynamics (AIMD) simulations show that adsorption of 1-propanol alters the structure of the Brønsted acid site through changes in the associated aluminum-oxygen tetrahedron in zeolite H-MFI. The decreasing intensity of the pre-edge signal of the in situ Al K-edge XANES spectra with increasing 1-propanol coverage shows that Al T-sites become more symmetric as the sorbed alcohol molecules form monomers, dimers, and trimers. The adsorption of monomeric 1-propanol on Brønsted acid sites reduces the distortion of the associated Al T-site, shortens the Al-O distance, and causes the formation of a Zundel-like structure. With dimeric and trimeric alcohol clusters, the zeolite proton is fully transferred to the alcohols and the aluminum-oxygen tetrahedron becomes fully symmetric. The subtle changes in Al-K-edge XANES in the presence of sorbate structures, with the use of theory, are used to probe the local zeolite structures and provide a basis to predict the population and chemical state of the sorbed species.

8.
J Am Chem Soc ; 145(32): 17710-17719, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37545395

ABSTRACT

The stoichiometric conversion of methane to methanol by Cu-exchanged zeolites can be brought to highest yields by the presence of extraframework Al and high CH4 chemical potentials. Combining theory and experiments, the differences in chemical reactivity of monometallic Cu-oxo and bimetallic Cu-Al-oxo nanoclusters stabilized in zeolite mordenite (MOR) are investigated. Cu-L3 edge X-ray absorption near-edge structure (XANES), infrared (IR), and ultraviolet-visible (UV-vis) spectroscopies, in combination with CH4 oxidation activity tests, support the presence of two types of active clusters in MOR and allow quantification of the relative proportions of each type in dependence of the Cu concentration. Ab initio molecular dynamics (MD) calculations and thermodynamic analyses indicate that the superior performance of materials enriched in Cu-Al-oxo clusters is related to the activity of two µ-oxo bridges in the cluster. Replacing H2O with ethanol in the product extraction step led to the formation of ethyl methyl ether, expanding this way the applicability of these materials for the activation and functionalization of CH4. We show that competition between different ion-exchanged metal-oxo structures during the synthesis of Cu-exchanged zeolites determines the formation of active species, and this provides guidelines for the synthesis of highly active materials for CH4 activation and functionalization.

9.
Science ; 379(6634): 807-811, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36821681

ABSTRACT

Selective upcycling of polyolefin waste has been hampered by the relatively high temperatures that are required to cleave the carbon-carbon (C-C) bonds at reasonably high rates. We present a distinctive approach that uses a highly ionic reaction environment to increase the polymer reactivity and lower the energy of ionic transition states. Combining endothermic cleavage of the polymer C-C bonds with exothermic alkylation reactions of the cracking products enables full conversion of polyethylene and polypropylene to liquid isoalkanes (C6 to C10) at temperatures below 100°C. Both reactions are catalyzed by a Lewis acidic species that is generated in a chloroaluminate ionic liquid. The alkylate product forms a separate phase and is easily separated from the reactant catalyst mixture. The process can convert unprocessed postconsumer items to high-quality liquid alkanes with high yields.

10.
J Am Chem Soc ; 145(2): 1407-1422, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36598430

ABSTRACT

Grafting metal cations to missing linker defect sites in zirconium-based metal-organic frameworks, such as UiO-66, produces a uniquely well-defined and homotopic catalytically active site. We present here the synthesis and characterization of a group of UiO-66-supported metal catalysts, M-UiO-66 (M = Ni, Co, Cu, and Cr), for the catalytic dimerization of alkenes. The hydrogen-deuterium exchange via deuterium oxide adsorption followed by infrared spectroscopy showed that the last molecular water ligand desorbs from the sites after evacuation at 300 °C leading to M(OH)-UiO-66 structures. Adsorption of 1-butene is studied using calorimetry and density functional theory techniques to characterize the interactions of the alkene with metal cation sites that are found active for alkene oligomerization. For the most active Ni-UiO-66, the removal of molecular water from the active site significantly increases the 1-butene adsorption enthalpy and almost doubles the catalytic activity for 1-butene dimerization in comparison to the presence of water ligands. Other M-UiO-66 (M = Co, Cu, and Cr) exhibit 1-3 orders of magnitude lower catalytic activities compared to Ni-UiO-66. The catalytic activities correlate linearly with the Gibbs free energy of 1-butene adsorption. Density functional theory calculations probing the Cossee-Arlman mechanism for all metals support the differences in activity, providing a molecular level understanding of the metal site as the active center for 1-butene dimerization.


Subject(s)
Organometallic Compounds , Adsorption , Dimerization , Cations , Zirconium/chemistry , Alkenes , Water/chemistry
11.
Angew Chem Int Ed Engl ; 62(3): e202208693, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36317985

ABSTRACT

The intracrystalline ionic environment in microporous zeolite can remarkably modify the excess chemical potential of adsorbed reactants and transition states, thereby influencing the catalytic turnover rates. However, a limit of the rate enhancement for aqueous-phase dehydration of alcohols appears to exist for zeolites with high ionic strength. The origin of such limitation has been hypothesized to be caused by the spatial constraints in the pores via, e.g., size exclusion effects. It is demonstrated here that the increase in turnover rate as well as the formation of a maximum and the rate drop are intrinsic consequences of the increasingly dense ionic environment in zeolite. The molecularly sized confines of zeolite create a unique ionic environment that monotonically favors the formation of alcohol-hydronium ion complexes in the micropores. The zeolite microporous environment determines the kinetics of catalytic steps and tailors the impact of ionic strength on catalytic rates.

12.
Adv Mater ; 35(6): e2207380, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36394175

ABSTRACT

Syngas, a mixture of CO and H2 , is a high-priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight-driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State-of-the-art catalytic systems and materials often fall short as application-oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light-harvesting metal-organic framework hosting two molecular catalysts is engineered to yield colloidal, water-stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In-depth fluorescence, X-ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all-in-one material toward application in solar energy-driven syngas generation.

13.
Nat Commun ; 13(1): 7967, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36575187

ABSTRACT

The open circuit potential (OCP) established by the quasi-equilibrated electrode reaction of H2 and H3O+(hydr.), complicates catalytic reactions significantly. The hydrogenolysis rate of benzylic alcohol on Pd/C increases 2-3 orders of magnitude with the pH decreasing from 7 to 0.6. The reaction follows a pathway of protonated benzyl alcohol dehydration to a benzylic carbenium ion, followed by a hydride addition to form toluene. The dehydration of protonated benzyl alcohol is kinetic relevent, thus, being enhanced at lower pH. The OCP stabilizes all cationic species in the elementary steps. Particularly, the initial state (benzyl alcohol oxonium ion) is less stabilized than the dehydration transition state and the product (benzylic carbenium), thus, lowering the free energy barrier of the rate-determining step. In accordance, the rate increased with increasingly negative OCP. Beside OCP, an external negative electric potential in an electrocatlaytic system was also demonstrated to enhance the rate in the same way.

14.
Nat Commun ; 13(1): 7154, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418289

ABSTRACT

In aqueous mediums, the chemical environment for catalytic reactions is not only comprised of water molecules but also of corresponding ionized species, i.e., hydronium ions, which can impact the mechanism and kinetics of a reaction. Here we show that in aqueous-phase hydrogenation of furfural on Pd/C, increasing the hydronium ion activities by five orders of magnitude (from pH 7 to pH 1.6) leads to an increase of less than one order of magnitude in the reaction rate. Instead of a proton-coupled electron transfer pathway, our results show that a Langmuir-Hinshelwood mechanism describes the rate-limiting hydrogen addition step, where hydrogen atom adsorbed on Pd is transferred to the carbonyl C atom of the reactant. As such, the strength of hydrogen binding on Pd, which decreases with increasing hydronium ion concentration (i.e., 2 kJ molH2-1 per unit pH), is a decisive factor in hydrogenation kinetics (rate constant +270%). In comparison, furfural adsorption on Pd is pH-independent, maintaining a tilted geometry that favors hydrogen attack at the carbonyl group over the furan ring.


Subject(s)
Furaldehyde , Palladium , Furaldehyde/chemistry , Hydrogenation , Palladium/chemistry , Protons , Hydrogen , Water/chemistry
15.
J Am Chem Soc ; 144(27): 12347-12356, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35771043

ABSTRACT

A highly selective Ga-modified zeolite BEA for propane dehydrogenation has been synthesized by grafting Ga on Zn-BEA followed by removal of Zn in the presence of H2. A propene selectivity of 82% at 19% propane conversion illustrates the high selectivity at 813 K. The kinetic model of the catalyzed dehydrogenation including the elementary steps of propane adsorption, first and second C-H bond cleavage, and propene and H2 desorption demonstrates that the propane dehydrogenation rate is determined by the first C-H bond cleavage at low pC3H8, while at high pC3H8, the rate is limited by the desorption of H2. The active sites have been identified as dehydrated and tetrahedrally coordinated Ga3+ in the *BEA lattice. The low selectivity toward aromatics is concluded to be associated with the high Lewis acid strength of lattice Ga3+ and the low Brønsted acid strength of the hydrated Ga sites.

16.
Angew Chem Int Ed Engl ; 61(30): e202203172, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35482977

ABSTRACT

Hydrogenolysis and hydrolysis of aryl ethers in the liquid phase are important reactions for accessing functionalized cyclic compounds from renewable feedstocks. On supported noble metals, hydrogenolysis is initiated by a hydrogen addition to the aromatic ring followed by C-O bond cleavage. In water, hydrolysis and hydrogenolysis proceed by partial hydrogenation of the aromatic ring prior to water or hydrogen insertion. The mechanisms are common for the studied metals, but the selectivity to hydrogenolysis increases in the order Pd95 % in water and alkaline conditions.

17.
JACS Au ; 2(3): 613-622, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35373212

ABSTRACT

NaY zeolite-encapsulated dimeric (Mo2S4) and tetrameric (Mo4S4) molybdenum sulfide clusters stabilize hydrogen as hydride binding to Mo atoms. Density functional theory (DFT) calculations and adsorption measurements suggest that stabilization of hydrogen as sulfhydryl (SH) groups, as typical for layered MoS2, is thermodynamically disfavored. Competitive adsorption of H2 and ethene on Mo was probed by quantifying adsorbed CO on partly hydrogen and/or ethene covered samples with IR spectroscopy. During hydrogenation, experiment and theory suggest that Mo is covered predominately with ethene and sparsely with hydride. DFT calculations further predict that, under reaction conditions, each Mo x S y cluster can activate only one H2, suggesting that the entire cluster (irrespective of its nuclearity) acts as one active site for hydrogenation. The nearly identical turnover frequencies (24.7 ± 3.3 molethane·h-1·molcluster -1), apparent activation energies (31-32 kJ·mol-1), and reaction orders (∼0.5 in ethene and ∼1.0 in H2) show that the active sites in both clusters are catalytically indistinguishable.

18.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35046020

ABSTRACT

Water influences critically the kinetics of the autocatalytic conversion of methanol to hydrocarbons in acid zeolites. At very low conversions but otherwise typical reaction conditions, the initiation of the reaction is delayed in presence of H2O. In absence of hydrocarbons, the main reactions are the methanol and dimethyl ether (DME) interconversion and the formation of a C1 reactive mixture-which in turn initiates the formation of first hydrocarbons in the zeolite pores. We conclude that the dominant reactions for the formation of a reactive C1 pool at this stage involve hydrogen transfer from both MeOH and DME to surface methoxy groups, leading to methane and formaldehyde in a 1:1 stoichiometry. While formaldehyde reacts further to other C1 intermediates and initiates the formation of first C-C bonds, CH4 is not reacting. The hydride transfer to methoxy groups is the rate-determining step in the initiation of the conversion of methanol and DME to hydrocarbons. Thus, CH4 formation rates at very low conversions, i.e., in the initiation stage before autocatalysis starts, are used to gauge the formation rates of first hydrocarbons. Kinetics, in good agreement with theoretical calculations, show surprisingly that hydrogen transfer from DME to methoxy species is 10 times faster than hydrogen transfer from methanol. This difference in reactivity causes the observed faster formation of hydrocarbons in dry feeds, when the concentration of methanol is lower than in presence of water. Importantly, the kinetic analysis of CH4 formation rates provides a unique quantitative parameter to characterize the activity of catalysts in the methanol-to-hydrocarbon process.

19.
J Am Chem Soc ; 143(48): 20133-20143, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34813324

ABSTRACT

Tungstate domains supported on ZrO2, Al2O3, TiO2, and activated carbon drastically influence the hydronium-ion-catalyzed aqueous-phase dehydration of alcohols. For all catalysts, the rate of cyclohexanol dehydration normalized to the concentration of Brønsted acid sites (turnover frequencies, TOFs) was lower for monotungstates than for polytungstates and larger crystallites of WO3. TOFs were constant when reaching or exceeding the monolayer coverage of tungstate, irrespective of the specific nature of surface structures that continuously evolve with the surface W loading. However, the TOFs with polytungstates and large WO3 crystallites depend strongly on the underlying support (e.g., WOx/C catalysts are 10-50-fold more active than WOx/Al2O3 catalysts). The electrical double layer (EDL) surrounding the negatively charged WOx domains contains hydrated hydronium ions, whose local concentrations change with the support. This varying concentration of interfacial hydronium ions ("local ionic strength") impacts the excess chemical potential of the reacting alcohols and induces the marked differences in the TOFs. Primary H/D kinetic isotope effects (∼3), together with the substantially positive entropy of activation (111-195 J mol-1 K-1), indicate that C-H(D) bond cleavage is involved in the kinetically relevant step of an E1-type mechanistic sequence, regardless of the support identity. The remarkable support dependence of the catalytic activity observed here for the aqueous-phase dehydration of cycloalkanols likely applies to a broad set of hydronium-ion-catalyzed organic reactions sensitive to ionic strength.

20.
J Am Chem Soc ; 143(48): 20274-20280, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34817993

ABSTRACT

Nickel-functionalized UiO-66 metal organic frameworks (MOFs) oligomerize ethylene in the absence of cocatalysts or initiators after undergoing ethylene-pressure-dependent transients and maintain stable oligomerization rates for >15 days on stream. Higher ethylene pressures shorten induction periods and engender more active sites for ethylene oligomerization; these sites exhibit invariant selectivity-conversion characteristics to justify that only one type of catalytic center is relevant for oligomerization. The number of active sites is estimated using in situ NO titration to disambiguate the effect of increased reaction rates upon exposure to increasing ethylene pressures. After accounting for augmented site densities with increasing ethylene pressures, ethylene oligomerization is first order in ethylene pressure from 100 to 1800 kPa with an activation energy of 81 kJ mol-1 at temperatures from 443-503 K on Ni/UiO-66. A representative Ni/UiO-66 cluster model that mimics high ethylene pressure process conditions is validated with ab initio thermodynamic analysis, and the Cossee-Arlman mechanism is posited based on comparisons between experimental and computed activation enthalpies from density functional theory calculations on these cluster models of Ni/UiO-66. The insights gained from experiment and theory help rationalize evolution in structure and stability for ethylene oligomerization Ni/UiO-66 MOF catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...