Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Growth Differ ; 64(9): 527-536, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36251346

ABSTRACT

Hepatocyte growth factor (HGF) is the natural ligand of the MET receptor tyrosine kinase. This ligand-receptor couple is essential for the maturation process of hepatocytes. Previously, the rational design of a synthetic protein based on the assembly of two K1 domains from HGF led to the production of a potent and stable MET receptor agonist. In this study, we compared the effects of K1K1 with HGF during the differentiation of hepatocyte progenitors derived from human induced pluripotent stem cells (hiPSCs). In vitro, K1K1, in the range of 20 to 200 nM, successfully substituted for HGF and efficiently activated ERK downstream signaling. Analysis of the levels of hepatocyte markers showed typical liver mRNA and protein expression (HNF4α, albumin, alpha-fetoprotein, CYP3A4) and phenotypes. Although full maturation was not achieved, the results suggest that K1K1 is an attractive candidate MET agonist suitable for replacing complex and expensive HGF treatments to induce hepatic differentiation of hiPSCs.


Subject(s)
Induced Pluripotent Stem Cells , Proto-Oncogene Proteins c-met , Humans , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/pharmacology , Ligands , Cell Differentiation , Hepatocytes , Hepatocyte Growth Factor/pharmacology , Hepatocyte Growth Factor/metabolism
2.
Biotechnol Prog ; 36(5): e3013, 2020 09.
Article in English | MEDLINE | ID: mdl-32364651

ABSTRACT

The liver zonation is an important phenomenon characterized by a gradient of several functions along the liver acinus. However, this gradient remains difficult to reproduce in in-vitro conditions, making the obtention of an in-vitro method to recapitulate the liver zonation a challenging issue. In this study, we evaluated the spatial evolution of the transcriptome profile of human induced pluripotent stem cells (hiPSCs) differentiated toward hepatocytes-like cells (HLCs) phenotype in a microfluidic biochip environment. Cells collected at the inlet of the biochip, where the oxygen concentration is higher, were identified by the expression of genes involved in metabolic pathways related to cellular reorganization and cell proliferation. Cells collected in the middle and at the outlet of the biochips, where oxygen concentrations are lower, were characterized by the upregulation of genes involved in cellular detoxification processes (CYP450), PPAR signaling or arginine biosynthesis. A subset of 16 transcription factors (TFs) was extracted and identified as upstream regulators to HNF1A and PPARA. These TFs are also known as regulators to target genes engaged in the Wnt/ßcatenin pathway, in the TGFß/BMP/SMAD signaling, in the transition between epithelial mesenchymal transition (EMT) and mesenchymal epithelial transition (MET), in the homeostasis of lipids, bile acids and carbohydrates homeostasis, in drug metabolism, in the estrogen processing and in the oxidative stress response. Overall, the analysis allowed to confirm a partial zonation-like pattern in hiPSCs-derived HLCs in the microfluidic biochip environment. These results provide important insights into the reproduction of liver zonation in-vitro for a better understanding of the phenomenon.


Subject(s)
Hepatocytes , Induced Pluripotent Stem Cells , Liver , Microfluidic Analytical Techniques/methods , Transcriptome/genetics , Cell Differentiation , Cells, Cultured , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Liver/cytology , Liver/metabolism , Nanostructures/chemistry , Tissue Engineering
3.
Differentiation ; 112: 17-26, 2020.
Article in English | MEDLINE | ID: mdl-31869687

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) are potentially an invaluable source of cells for regenerative medicine, disease modeling and drug discovery. However, the differentiation of hiPSCs into fully functional hepatocytes remains a major challenge. Despite the importance of the information carried by metabolomes, the exploitation of metabolomics for characterizing and understanding hiPSC differentiation remains largely unexplored. Here, to increase knowledge of hiPSC maturation into mature hepatocytes, we investigated their metabolomics profiles during sequential step-by-step differentiation: definitive endoderm (DE), specification into hepatocytes (HB-pro (hepatoblast progenitors)), progenitor hepatocytes (Pro-HEP) and mature hepatocyte-like cells (HLCs). Metabolomics analysis illustrated a switch from glycolysis-based respiration in DE step to oxidative phosphorylation in HLCs step. DE was characterized by fatty acid beta oxidation, sorbitol metabolism and pentose phosphate pathway, and glutamine and glucose metabolisms as various potential energy sources. The complex lipid metabolism switch was monitored via the reduction of lipid production from DE to HLCs step, whereas high glycerol production occurred mainly in HLCs. The nitrogen cycle, via urea production, was also a typical mechanism revealed in HLCs step. Our analysis may contribute to better understanding of differentiation and suggest new targets for improving iPSC maturation into functional hepatocytes.


Subject(s)
Cell Differentiation/genetics , Hepatocytes/cytology , Induced Pluripotent Stem Cells/cytology , Metabolome/genetics , Endoderm/growth & development , Endoderm/metabolism , Gene Expression Regulation, Developmental/genetics , Glucose/genetics , Glucose/metabolism , Glutamine/genetics , Glutamine/metabolism , Glycolysis/genetics , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Lipid Metabolism/genetics , Metabolomics/methods , Oxidative Phosphorylation
4.
Mol Omics ; 15(6): 383-398, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31612883

ABSTRACT

We investigated the human induced pluripotent stem cells (hiPSCs) during a sequential in vitro step-by-step differentiation into hepatocyte-like cells (HLCs) using nanoCAGE, a method for promoters, transcription factors, and transcriptome analysis. Specific gene clusters reflected the different steps of the hepatic differentiation. The proliferation step was characterized by a typical cell cycle and DNA replication. The hepatic endoderm and the HLC steps were marked by a common signature including cell interactions with extracellular matrix (ECM), lipoproteins and hepatic biomarkers (such as albumin and alpha-fetoprotein). The specific HLC profile was characterized by important transcription factors such as HIF1A, JUN, MAF, KLF6, BMP4 and with a larger expression of genes related to Wnt signaling, extracellular matrix, lipid metabolism, urea cycle, drugs, and solute transporters. HLC profile was also characterized by the activation of upstream regulators such as HNF1A, MEIS2, NFIX, WRNIP1, SP4, TAL1. Their regulatory networks highlighted HNF4a as a bridge and linked them to important processes such as EMT-MET transitions, ECM remodeling and liver development pathways (HNF3, PPARA signaling, iron metabolism) along the different steps of differentiation.


Subject(s)
Cell Differentiation/genetics , Gene Expression Regulation, Developmental , Hepatocytes/cytology , Hepatocytes/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Transcription Factors/genetics , Biomarkers , Cells, Cultured , Computational Biology/methods , Fluorescent Antibody Technique , Gene Ontology , Gene Regulatory Networks , Humans , Immunohistochemistry , Models, Biological , Organ Specificity/genetics , RNA, Messenger/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...