Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 6(4)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322772

ABSTRACT

Lignin is the principal natural source of phenolics but its structural complexity and variability make it difficult to valorize through chemical depolymerization approaches. White rots are one of the rare groups of organisms that are able to degrade lignin in ecosystems. This biodegradation starts through extracellular enzymes producing oxidizing agents to depolymerize lignin and continue with the uptake of the generated oligomers by fungal cells for further degradation. Phanerochaete chrysosporium is one of the most studied species for the elucidation of these biodegradation mechanisms. Although the extracellular depolymerization step appears interesting for phenolics production from lignin, the uptake and intracellular degradation of oligomers occurring in the course of the depolymerization limits its potential. In this study, we aimed at inhibiting the phenolics uptake mechanism through metabolic inhibitors to favor extracellular oligomers accumulation without preventing the ligninases production that is necessary for extracellular depolymerization. The use of sodium azide confirmed that an active transportation phenomenon is involved in the phenolics uptake in P. chrysosporium. A protocol based on carbonyl cyanide m-chlorophenyl hydrazone enabled reaching 85% inhibition for vanillin uptake. This protocol was shown not to inhibit, but on the contrary, to stimulate the depolymerization of both dehydrogenation polymers (DHPs) and industrial purified lignins.

2.
J Biosci Bioeng ; 128(3): 384-390, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31103424

ABSTRACT

The present work investigates the bioconversion of the olive cake (OC) generated by olive oil industries in Morocco through solid-state fermentation using selected filamentous fungi to increase its nutritional values for subsequent valorization as ruminants feed. The fungi, namely Beauveria bassiana, Fusarium flocciferum, Rhizodiscina cf. lignyota, and Aspergillus niger were cultured on OC for 15 days. Chemical composition as well as enzymes activities were determined. Results showed (i) an increase in protein content of up to 94% for treated OC and (ii) significant (P < 0.05) decreases of phenolic compounds, up to 43%, 70% and 42% for total phenolic content, total flavonoids content, and total condensed tannins, respectively. Moreover, the RP-HPLC analysis of fermented OC confirmed the degradation of individual phenolic compounds by the strains. These findings demonstrate that F. flocciferum and Rhizodiscina cf. lignyota are efficient enzymes producers leading to a nutritive enhancement of this by-product.


Subject(s)
Animal Feed , Fermentation , Food Handling/methods , Nutritive Value/physiology , Olea/chemistry , Plant Proteins, Dietary/analysis , Plant Proteins, Dietary/metabolism , Animal Feed/adverse effects , Animal Feed/analysis , Animals , Aspergillus niger/metabolism , Bioreactors , Food Analysis , Fungi/metabolism , Olea/metabolism , Solid Waste , Solid-Phase Synthesis Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...