Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Anim Ecol ; 93(5): 583-598, 2024 May.
Article in English | MEDLINE | ID: mdl-38566364

ABSTRACT

Large mammalian herbivores substantially impact ecosystem functioning. As their populations are dramatically altered globally, disentangling their consumptive and non-consumptive effects is critical to advance mechanistic understanding and improve prediction of effects over ecosystem and Earth-system spatial extents. Mathematical models have played an important role in clarifying potential mechanisms of herbivore zoogeochemistry, based mostly on their consumptive effects as primary consumers and recyclers of organic and inorganic matter via defecation and urination. Trampling is a ubiquitous effect among walking vertebrates, but the consequences and potential mechanisms of trampling in diverse environments remain poorly understood. We derive a novel mathematical model of large mammalian herbivore effects on ecosystem nitrogen cycling, focusing on how trampling and environmental context impact soil processes. We model herbivore trampling with a linear positive or negative additive effect on soil-mediated nitrogen cycling processes. Combining analytical and numerical analyses, we find trampling by large mammalian herbivores is likely to decrease nitrogen mineralisation rate across diverse environments, such as temperate grassland and boreal forest. These effects are mediated by multiple potential mechanisms, including trampling-induced changes to detritivore biomass and functioning (e.g. rate of organic matter consumption). We also uncover scenarios where trampling can increase nitrogen mineralisation rate, contingent on the environment-specific relative sensitivity of detritivore mineral-nitrogen release and detritivore mortality, to trampling. In contrast to some consumptive mechanisms, our results suggest the pace of soil nitrogen cycling prior to trampling has little influence over the direction of the trampling net effect on nitrogen mineralisation, but that net effects may be greater in slow-cycling systems (e.g. boreal forests) than in fast-cycling systems (e.g. grasslands). Our model clarifies the potential consequences of previously overlooked mechanisms of zoogeochemistry that are common to all terrestrial biomes. Our results provide empirically testable predictions to guide future progress in empirical and theoretical studies of herbivore effects in diverse environmental contexts. Resolving ecological contingencies around animal consumptive and non-consumptive effects will improve whole-ecosystem management efforts such as restoration and rewilding.


Subject(s)
Herbivory , Mammals , Nitrogen Cycle , Soil , Animals , Mammals/physiology , Soil/chemistry , Models, Biological , Ecosystem , Nitrogen/metabolism
2.
J Anim Ecol ; 92(12): 2244-2247, 2023 12.
Article in English | MEDLINE | ID: mdl-37953435

ABSTRACT

Research Highlight: Ferraro, K. M., Welker, L., Ward, E. B., Schmitz, O. J., & Bradford, M. A. (2023). Plant mycorrhizal associations mediate the zoogeochemical effects of calving subsidies by a forest ungulate. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.14002. Animals play large roles in ecosystem elemental cycling but predicting effects in diverse contexts remains a substantial challenge. Fundamental to progress is (1) identifying mechanisms by which animals impact nutrient distribution and cycling, and (2) disentangling how environmental context mediates the operation of alternative mechanisms. In an elegant field experiment, Ferraro et al. (2023) provide the first detailed exploration of the impact of nutrient inputs from mammalian parturition on soil functioning and the stoichiometry of plant tissues. The authors find that nitrogen from experimental additions of ungulate parturition material (natal fluids) is rapidly incorporated into microsite soil organic pools and plant tissues. They also find that soil processes (soil microbial biomass, rates of carbon mineralization, nitrogen mineralization and nitrification) and the nitrogen content of plant tissues above- and belowground are increased by addition of parturition material. Notably, the authors identify that increases in some soil processes and plant tissue nitrogen are weaker in microsites dominated by ericoid mycorrhizal plants than those dominated by ectomycorrhizal plants. These findings demonstrate that parturition depositions, a ubiquitous but overlooked mechanism of mammalian impacts on ecosystems, impact ecosystem processes and plant tissue stoichiometry. Furthermore, plant-fungal associations are a predictive axis of context dependency mediating zoogeochemical effects at fine scales. Ferraro et al.'s (2023) novel approach simultaneously advances mechanistic understanding of animal-ecosystem interactions at fine scales and facilitates prediction of ungulate effects on nutrient availability at landscape extents.


Subject(s)
Ecosystem , Forests , Animals , Biomass , Plants/microbiology , Soil , Soil Microbiology , Nitrogen , Carbon , Mammals
3.
J Anim Ecol ; 92(10): 2016-2027, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37565516

ABSTRACT

1. Experimental studies across biomes demonstrate that herbivores can have significant effects on ecosystem functioning. Herbivore effects, however, can be highly variable with studies demonstrating positive, neutral or negative relationships between herbivore presence and different components of ecosystems. Mixed effects are especially likely in the soil, where herbivore effects are largely indirect mediated through effects on plants. 2. We conducted a long-term experiment to disentangle the effects of non-native moose in boreal forests on plant communities, nutrient cycling, soil composition and soil organism communities. 3. To explore the effect of moose on soils, we conduct separate analyses on the soil organic and mineral horizons. Our data come from 11 paired exclosure-control plots in eastern and central Newfoundland, Canada that provide insight into 22-25 years of moose herbivory. We fit piecewise structural equations models (SEM) to data for the organic and mineral soil horizons to test different pathways linking moose to above-ground and below-ground functioning. 4. The SEMs revealed that moose exclusion had direct positive impacts on adult tree count and an indirect negative impact on shrub percent cover mediated by adult tree count. We detected no significant impact of moose on soil microbial C:N ratio or net nitrogen mineralization in the organic or mineral soil horizon. Soil temperature and moisture, however, was more than twice as variable in the presence (i.e. control) than absence (i.e. exclosure) of moose. Overall, we observed clear impacts of moose on above-ground forest components with limited indirect effects below-ground. Even after 22-25 years of exclusion, we did not find any evidence of moose impacts on soil microbial C:N ratio and net nitrogen mineralization. 5. Our long-term study and mechanistic path analysis demonstrates that soils can be resilient to ungulate herbivore effects despite evidence of strong effects above-ground. Long-term studies and analyses such as this one are relatively rare yet critical for reconciling some of the context-dependency observed across studies of ungulates effects on ecosystem functions. Such studies may be particularly valuable in ecosystems with short growing seasons such as the boreal forest.

4.
Ecology ; 104(5): e4023, 2023 05.
Article in English | MEDLINE | ID: mdl-36890684

ABSTRACT

Resource quantity and quality can differ between adjacent ecosystems, and these differences can impact subsidies exchanged between ecosystems. The quantity and quality of subsidies are rapidly changing in response to stressors associated with global environmental change, but while we have models to predict the effects of changes in subsidy quantity, we currently lack models to predict the effects of changes in subsidy quality on recipient ecosystem functioning. We developed a novel model to predict the effects of subsidy quality on recipient ecosystem biomass distribution, recycling, production, and efficiency. We parameterized the model for a case study of a riparian ecosystem subsidized by pulsed emergent aquatic insects. In this case study we focused on a common measure of subsidy quality that differs between riparian and aquatic ecosystems: the higher content of long-chain polyunsaturated fatty acids (PUFAs) in aquatic ecosystems. We analyzed how changes in the PUFA concentration of aquatic subsidies affect the dynamics in biomass stocks and functions of the riparian ecosystem. We also conducted a global sensitivity analysis to identify key drivers of subsidy impacts. Our analysis showed that subsidy quality increased the functioning of the recipient ecosystem. Recycling increased more strongly than production per unit subsidy quality increase, meaning there was a threshold where an increase in subsidy quality led to stronger effects of subsidies on recycling relative to the production of the recipient ecosystem. Our predictions were most sensitive to basal nutrient input, highlighting the relevance of recipient ecosystem nutrient levels to understanding the effects of ecosystem connections. We argue that recipient ecosystems that rely on high-quality subsidies, such as aquatic-terrestrial ecotones, are highly sensitive to changes in subsidy-recipient ecosystem connections. Our novel model unifies the subsidy hypothesis and food quality hypothesis and provides testable predictions to understand the effects of ecosystem connections on ecosystem functioning under global changes.


Subject(s)
Ecosystem , Food Chain , Animals , Biomass , Insecta
5.
Ecol Evol ; 12(9): e9244, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36110871

ABSTRACT

Changes in foliar elemental niche properties, defined by axes of carbon (C), nitrogen (N), and phosphorus (P) concentrations, reflect how species allocate resources under different environmental conditions. For instance, elemental niches may differ in response to large-scale latitudinal temperature and precipitation regimes that occur between ecoregions and small-scale differences in nutrient dynamics based on species co-occurrences at a community level. At a species level, we compared foliar elemental niche hypervolumes for balsam fir (Abies balsamea (L.) Mill.) and white birch (Betula papyrifera Marshall) between a northern and southern ecoregion. At a community level, we grouped our focal species using plot data into conspecific (i.e., only one focal species is present) and heterospecific groups (i.e., both focal species are present) and compared their foliar elemental concentrations under these community conditions across, within, and between these ecoregions. Between ecoregions at the species and community level, we expected niche hypervolumes to be different and driven by regional biophysical effects on foliar N and P concentrations. At the community level, we expected niche hypervolume displacement and expansion patterns for fir and birch, respectively-patterns that reflect their resource strategy. At the species level, foliar elemental niche hypervolumes between ecoregions differed significantly for fir (F = 14.591, p-value = .001) and birch (F = 75.998, p-value = .001) with higher foliar N and P in the northern ecoregion. At the community level, across ecoregions, the foliar elemental niche hypervolume of birch differed significantly between heterospecific and conspecific groups (F = 4.075, p-value = .021) but not for fir. However, both species displayed niche expansion patterns, indicated by niche hypervolume increases of 35.49% for fir and 68.92% for birch. Within the northern ecoregion, heterospecific conditions elicited niche expansion responses, indicated by niche hypervolume increases for fir of 29.04% and birch of 66.48%. In the southern ecoregion, we observed a contraction response for birch (niche hypervolume decreased by 3.66%) and no changes for fir niche hypervolume. Conspecific niche hypervolume comparisons between ecoregions yielded significant differences for fir and birch (F = 7.581, p-value = .005 and F = 8.038, p-value = .001) as did heterospecific comparisons (F = 6.943, p-value = .004, and F = 68.702, p-value = .001, respectively). Our results suggest species may exhibit biogeographical specific elemental niches-driven by biophysical differences such as those used to describe ecoregion characteristics. We also demonstrate how a species resource strategy may inform niche shift patterns in response to different community settings. Our study highlights how biogeographical differences may influence foliar elemental traits and how this may link to concepts of ecosystem and landscape functionality.

7.
Oecologia ; 199(1): 27-38, 2022 May.
Article in English | MEDLINE | ID: mdl-35396976

ABSTRACT

Nutritional ecologists aim to predict population or landscape-level effects of food availability, but the tools to extrapolate nutrition from small to large extents are often lacking. The appropriate nutritional ecology currencies should be able to represent consumer responses to food while simultaneously be simple enough to expand such responses to large spatial extents and link them to ecosystem functioning. Ecological stoichiometry (ES), a framework of nutritional ecology, can meet these demands, but it is typically associated with ecosystem ecology and nutrient cycling, and less often used to study wildlife nutrition. Despite the emerging zoogeochemical evidence that animals, and thus their diets, play critical roles in nutrient movement, wildlife nutritional ecology has not fully embraced ES, and ES has not incorporated nutrition in many wildlife studies. Here, we discuss how elemental currencies are "nutritionally, organismally, and ecologically explicit" in the context of terrestrial herbivore nutritional ecology. We add that ES and elemental currencies offer a means to measure resource quality across landscapes and compare nutrient availability among regions. Further, we discuss ES shortcomings and solutions, and list future directions to advance the field. As ecological studies increasingly grow in spatial extent, and attempt to link multiple levels of biological organization, integrating more simple and unifying currencies into nutritional studies, like elements, is necessary for nutritional ecology to predict herbivore occurrences and abundances across regions.


Subject(s)
Ecosystem , Herbivory , Animals , Ecology , Herbivory/physiology
8.
Nat Ecol Evol ; 6(3): 307-314, 2022 03.
Article in English | MEDLINE | ID: mdl-35027724

ABSTRACT

Larger geographical areas contain more species-an observation raised to a law in ecology. Less explored is whether biodiversity changes are accompanied by a modification of interaction networks. We use data from 32 spatial interaction networks from different ecosystems to analyse how network structure changes with area. We find that basic community structure descriptors (number of species, links and links per species) increase with area following a power law. Yet, the distribution of links per species varies little with area, indicating that the fundamental organization of interactions within networks is conserved. Our null model analyses suggest that the spatial scaling of network structure is determined by factors beyond species richness and the number of links. We demonstrate that biodiversity-area relationships can be extended from species counts to higher levels of network complexity. Therefore, the consequences of anthropogenic habitat destruction may extend from species loss to wider simplification of natural communities.


Subject(s)
Biodiversity , Ecosystem
9.
Oecologia ; 198(3): 579-591, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34743229

ABSTRACT

Intraspecific feeding choices comprise a large portion of herbivore foraging decisions. Plant resource quality is heterogeneously distributed, affected by nutrient availability and growing conditions. Herbivores navigate landscapes, foraging not only according to food qualities, but also energetic and nutritional demands. We test three non-exclusive foraging hypotheses using the snowshoe hare (Lepus americanus): (1) herbivore feeding choices and body conditions respond to intraspecific plant quality variation; (2) high energetic demands mitigate feeding responses; and (3) feeding responses are inflated when nutritional demands are high. We measured black spruce (Picea mariana) nitrogen, phosphorus and terpene compositions, as indicators of quality, within a snowshoe hare trapping grid and found plant growing conditions to explain spruce quality variation (R2 < 0.36). We then offered two qualities of spruce (H1) from the trapping grid to hares in cafeteria-style experiments and measured their feeding and body condition responses (n = 75). We proxied energetic demands (H2) with ambient temperature and coat insulation (% white coat) and nutritional demands (H3) with the spruce quality (nitrogen and phosphorus content) in home ranges. Hares with the strongest preference for high-quality spruce lost on average 2.2% less weight than hares who ate the least high-quality spruce relative to low-quality spruce. The results supported our energetic predictions as follows: hares in colder temperatures and with less-insulative coats (lower % white) consumed more spruce and were less selective towards high-quality spruce. Collectively, we found variation in plant growing conditions within herbivore home ranges substantial enough to affect herbivore body conditions, but energetic stats mediate plant-herbivore interactions.


Subject(s)
Hares , Picea , Animals , Hares/physiology , Herbivory , Homing Behavior , Plants
10.
Oecologia ; 197(2): 327-338, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34131817

ABSTRACT

Home range size of consumers varies with food quality, but the many ways of defining food quality hamper comparisons across studies. Ecological stoichiometry studies the elemental balance of ecological processes and offers a uniquely quantitative, transferrable way to assess food quality using elemental ratios, e.g., carbon (C):nitrogen (N). Here, we test whether snowshoe hares (Lepus americanus) vary their home range size in response to spatial patterns of C:N, C:phosphorus (P), and N:P ratios of two preferred boreal forage species, lowbush blueberry (Vaccinium angustifolium) and red maple (Acer rubrum), in summer months. Boreal forests are N- and P-limited ecosystems and access to N- and P-rich forage is paramount to snowshoe hares' survival. Accordingly, we consider forage with higher C content relative to N and P to be lower quality than forage with lower relative C content. We combine elemental distribution models with summer home range size estimates to test the hypothesis that home range size will be smaller in areas with access to high, homogeneous food quality compared to areas of low, heterogeneous food quality. Our results show snowshoe hares had smaller home ranges in areas where lowbush blueberry foliage quality was higher or more spatially homogenous than in areas of lower, more heterogeneous food quality. By responding to spatial patterns of food quality, consumers may influence community and ecosystem processes by, for example, varying nutrient recycling rates. Our reductionist biogeochemical approach to viewing resources leads us to holistic insights into consumer spatial ecology.


Subject(s)
Ecosystem , Hares , Animals , Herbivory , Homing Behavior , Seasons
11.
Ecology ; 102(7): e03365, 2021 07.
Article in English | MEDLINE | ID: mdl-33871056

ABSTRACT

Local dynamics are influenced by regional processes. Meta-ecology, or the study of spatial flows of energy, materials, and species between local systems, is becoming increasingly concerned with accurate depictions of species movements and the impacts of this movement on landscape-level ecosystem function. Indeed, incorporating diverse types of movement is a major frontier in metacommunity theory. Here, we synthesize literature to demonstrate that the movement of organisms between patches is governed by the interplay between both a species' ability to move and the combined effects of landscape structure and physical flows (termed abiotic controls), which together we refer to as abiotic-dependent species connectivity. For example, two lakes that share geographic proximity may be inaccessible for mobile fish species because they lack a river connecting them (landscape structure), but wind currents may disperse insects between them (physical flows). Empirical evidence suggests that abiotic controls, such as ocean currents, lead to abiotic-dependent species connectivity and that, in nature, this type of connectivity is the rule rather than the exception. Based on this empirical evidence, we introduce a novel mathematical framework to demonstrate how species movement capabilities and abiotic conditions, can interact to influence metacommunity stability. We apply this framework to predict how incorporating abiotic-dependent species connectivity applies to classic empirical examples of aquatic, aquatic-terrestrial, and terrestrial experimental metacommunities. We demonstrate that incorporating abiotic-dependent species connectivity into metacommunity models can lead to a much broader range of dynamics than models previously predicted, including a wider range of metacommunity stability. Our framework fills critical gaps in our basic understanding of organismal movement across landscapes and provides testable predictions for how such common natural phenomena impact landscape-level ecosystem function. Finally, we present future perspectives for further development of meta-ecological theory from questions about fragmentation to ecosystems. Anthropogenic change is not only leading to habitat loss from the damming of rivers to denuding the landscape, but altering the physical flows that have historically connected communities. Thus, recognizing the importance of these processes in tandem with species' movement abilities is critical for predicting and preserving the structure and function of ecological communities.


Subject(s)
Ecosystem , Rivers , Animals , Biota , Insecta , Lakes
12.
J Anim Ecol ; 90(2): 447-459, 2021 02.
Article in English | MEDLINE | ID: mdl-33073862

ABSTRACT

The persistence of whole communities hinges on the presence of select interactions which act to stabilize communities making the identification of these keystone interactions critical. One potential candidate is omnivory, yet theoretical research on omnivory thus far has been dominated by a modular theory approach whereby an omnivore and consumer compete for a shared resource. Empirical research, however, has highlighted the presence of a broader suite of omnivory modules. Here, we integrate empirical data analysis and mathematical models to explore the influence of both omnivory module (including classic, multi-resource, higher level, mutual predation and cannibalism) and omnivore-resource interaction type on food web stability. We use six classic empirical food webs to examine the prevalence of the different types of omnivory, a multi-species consumer-resource model to determine the stability of these different kinds of omnivory within a module context, and finally extend these models to a 50 species, whole food web model to examine the influence of omnivory on whole food web persistence. Our results challenge the concept that omnivory is broadly stabilizing. In particular, we demonstrate that the impact of omnivory depends on the type of omnivory being examined with multi-resource omnivory having the largest correlation with whole food web persistence. Moreover, our results highlight that we need to exercise caution when scaling modular theory to whole food web theory. Cannibalism, for example, was the most persistent and stable omnivory module in the modular theory analysis, but only demonstrated a weak correlation with whole food web persistence. Lastly, our results demonstrate that the frequency of omnivory modules are more important for whole food web persistence than the frequency of omnivore-resource interactions. Together, these results demonstrate that the role of omnivory often depends both on the type of omnivory being examined and the food web within which it is nested. In whole food web models, omnivory acts less as a keystone interaction, rather, specific types of omnivory, particularly multi-resource omnivory, act as keystone modules. Future work integrating module and whole food web theory is critical for resolving the role of key interactions in food webs.


Subject(s)
Food Chain , Models, Biological , Animals , Models, Theoretical , Predatory Behavior
13.
Trends Ecol Evol ; 35(11): 1001-1010, 2020 11.
Article in English | MEDLINE | ID: mdl-32800352

ABSTRACT

Large herbivores can have substantial effects on carbon (C) cycling, yet these animals are often overlooked in C budgets. Zoogeochemical effects may be particularly important in boreal forests, where diverse human activities are facilitating the expansion of large herbivore populations. Here, we argue that considering trophic dynamics is necessary to understand spatiotemporal variability in boreal forest C budgets. We propose a research agenda to scale local studies to landscape extents to measure the zoogeochemical impacts of large herbivores on boreal forest C cycling. Distributed networks of exclosure experiments, empirical studies across gradients in large herbivore abundance, multiscale models using herbivore distribution data, and remote sensing paired with empirical data will provide comprehensive accounting of C source-sink dynamics in boreal forests.


Subject(s)
Forests , Herbivory , Animals , Carbon , Carbon Cycle , Humans , Taiga , Trees
14.
Ecol Evol ; 10(24): 13847-13859, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33391685

ABSTRACT

Herbivores consider the variation of forage qualities (nutritional content and digestibility) as well as quantities (biomass) when foraging. Such selection patterns may change based on the scale of foraging, particularly in the case of ungulates that forage at many scales.To test selection for quality and quantity in free-ranging herbivores across scales, however, we must first develop landscape-wide quantitative estimates of both forage quantity and quality. Stoichiometric distribution models (StDMs) bring opportunity to address this because they predict the elemental measures and stoichiometry of resources at landscape extents.Here, we use StDMs to predict elemental measures of understory white birch quality (% nitrogen) and quantity (g carbon/m2) across two boreal landscapes. We analyzed global positioning system (GPS) collared moose (n = 14) selection for forage quantity and quality at the landscape, home range, and patch extents using both individual and pooled resource selection analyses. We predicted that as the scale of resource selection decreased from the landscape to the patch, selection for white birch quantity would decrease and selection for quality would increase.Counter to our prediction, pooled-models showed selection for our estimates of quantity and quality to be neutral with low explanatory power and no scalar trends. At the individual-level, however, we found evidence for quality and quantity trade-offs, most notably at the home-range scale where resource selection models explain the largest amount of variation in selection. Furthermore, individuals did not follow the same trade-off tactic, with some preferring forage quantity over quality and vice versa.Such individual trade-offs show that moose may be flexible in attaining a limiting nutrient. Our findings suggest that herbivores may respond to forage elemental compositions and quantities, giving tools like StDMs merit toward animal ecology applications. The integration of StDMs and animal movement data represents a promising avenue for progress in the field of zoogeochemistry.

15.
Nat Ecol Evol ; 3(8): 1153-1161, 2019 08.
Article in English | MEDLINE | ID: mdl-31358950

ABSTRACT

The productivity of marine ecosystems and the services they provide to humans are largely dependent on complex interactions between prey and predators. These are embedded in a diverse network of trophic interactions, resulting in a cascade of events following perturbations such as species extinction. The sheer scale of oceans, however, precludes the characterization of marine feeding networks through de novo sampling. This effort ought instead to rely on a combination of extensive data and inference. Here we investigate how the distribution of trophic interactions at the global scale shapes the marine fish food web structure. We hypothesize that the heterogeneous distribution of species ranges in biogeographic regions should concentrate interactions in the warmest areas and within species groups. We find that the inferred global metaweb of marine fish-that is, all possible potential feeding links between co-occurring species-is highly connected geographically with a low degree of spatial modularity. Metrics of network structure correlate with sea surface temperature and tend to peak towards the tropics. In contrast to open-water communities, coastal food webs have greater interaction redundancy, which may confer robustness to species extinction. Our results suggest that marine ecosystems are connected yet display some resistance to perturbations because of high robustness at most locations.


Subject(s)
Ecosystem , Food Chain , Animals , Extinction, Biological , Fishes , Humans , Oceans and Seas
16.
Ecology ; 100(5): e02674, 2019 05.
Article in English | MEDLINE | ID: mdl-30821345

ABSTRACT

Numerous biotic mechanisms can control ecosystem nutrient cycling, but their full incorporation into ecological models or experimental designs can result in inordinate complexity. Including organismal nutrient limitation in models of highly dimensional systems (i.e., those with many nutrient pools/species) presents a critical challenge. We evaluate the importance of explicitly considering microbial and animal nutrient limitation to predict ecosystem nitrogen cycling across plant-based and detritus-based food chains. We investigate how eight factorial scenarios of microbial, herbivore, and microbi-detritivore (i.e., omnivores consuming microbes and detritus) nitrogen or carbon limitation alter the stocks and flows of nitrogen in an ecosystem model. We used a combination of partial derivatives of model equilibrium solutions and numerical simulations using randomly drawn parameter sets to explore the impact of each nutrient limitation scenario on nutrient stocks and flows. We show that switching microbes, herbivores, or microbi-detritivores from nitrogen to carbon limitation consistently altered the ecosystem response to changes in inorganic nitrogen supply, plant C:N ratio, and microbial C:N ratio. Organism nutrient limitation changed ecosystem nitrogen flows by altering the feedbacks between the abiotic and biotic pools. For example, microbi-detritivore nutrient limitation determined whether the microbial response to changes in inorganic nitrogen supply and C:N ratios was dependent on the size of detrital carbon or detrital nitrogen pool. Such correlated responses among biotic and abiotic pools set up a network of predictable changes in ecosystem properties sensitive to organism nutrient limitation. Scenarios with microbial limitation were generally sufficient to capture the suite of ecosystem responses to increasing inorganic nitrogen supply, while scenarios with animal limitation added new behavior whenever C:N ratios changed. We make the case for explicitly considering both microbial and animal nutrient limitation when predicting the flow and distribution of nitrogen across green and brown food chains.


Subject(s)
Food Chain , Nitrogen , Animals , Carbon , Ecosystem , Nitrogen Cycle , Nutrients
17.
PLoS One ; 14(2): e0206711, 2019.
Article in English | MEDLINE | ID: mdl-30730890

ABSTRACT

Research in applied ecology provides scientific evidence to guide conservation policy and management. Applied ecology is becoming increasingly quantitative and model selection via information criteria has become a common statistical modeling approach. Unfortunately, parameters that contain little to no useful information are commonly presented and interpreted as important in applied ecology. I review the concept of an uninformative parameter in model selection using information criteria and perform a literature review to measure the prevalence of uninformative parameters in model selection studies applying Akaike's Information Criterion (AIC) in 2014 in four of the top journals in applied ecology (Biological Conservation, Conservation Biology, Ecological Applications, Journal of Applied Ecology). Twenty-one percent of studies I reviewed applied AIC metrics. Many (31.5%) of the studies applying AIC metrics in the four applied ecology journals I reviewed had or were very likely to have uninformative parameters in a model set. In addition, more than 40% of studies reviewed had insufficient information to assess the presence or absence of uninformative parameters in a model set. Given the prevalence of studies likely to have uninformative parameters or with insufficient information to assess parameter status (71.5%), I surmise that much of the policy recommendations based on applied ecology research may not be supported by the data analysis. I provide four warning signals and a decision tree to assist authors, reviewers, and editors to screen for uninformative parameters in studies applying model selection with information criteria. In the end, careful thinking at every step of the scientific process and greater reporting standards are required to detect uninformative parameters in studies adopting an information criteria approach.


Subject(s)
Conservation of Natural Resources/legislation & jurisprudence , Ecology/legislation & jurisprudence , Models, Statistical , Prevalence
18.
Ecol Lett ; 22(2): 265-274, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30548746

ABSTRACT

Material and energy flows among ecosystems can directly and indirectly drive ecosystem functions. Yet, how populations of consumers respond to allochthonous inputs at a macroecological scale is still unclear. Using a meta-analysis spanning several biomes, we show that the abundance of recipient populations is 36-57% larger with increased allochthonous inputs. The strength of direct effects on the recipients of these inputs as well as the indirect effects on the consumers of these recipients (i.e. ascending indirect effects) are constant across a latitudinal gradient spanning subtropical, arid, temperate, boreal and arctic ecosystems. However, indirect effect on the in situ resources of the input recipient (i.e. descending indirect effects) decreases with latitude. Our results suggest that the influence of allochthonous inputs can vary across large-scale gradients of ecosystem productivity and may be driven by the types of trophic interactions within recipient food webs.


Subject(s)
Ecosystem , Food Chain , Animals , Ecology
19.
Ecol Evol ; 9(24): 14453-14464, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31938532

ABSTRACT

Intraspecific variability in ecological traits is widespread in nature. Recent evidence, mostly from aquatic ecosystems, shows individuals differing at the most fundamental level, that of their chemical composition. Age, sex, or body size and condition may be key drivers of intraspecific variability in the body concentrations of carbon (C), nitrogen (N), and phosphorus (P). However, we still have a rudimentary understanding of the patterns and drivers of intraspecific variability in chemical composition of terrestrial consumers, particularly vertebrates.Here, we investigate the elemental composition of the snowshoe hare Lepus americanus. Based on snowshoe hare ecology, we predicted older, larger individuals to have higher concentration of N or P and lower C content compared with younger, smaller individuals. We also predicted females to have higher concentrations of N, P, and lower C than males due to the higher reproductive costs they incur. Finally, we predicted that individuals in better body condition would have higher N and P than those in worse condition, irrespective of age.We obtained C, N, and P concentrations and ratios from a sample of 50 snowshoe hares. We then used general linear models to test our predictions on the relationship between age, sex, body size or condition and stoichiometric variability in hares.We found considerable variation in C, N, and P stoichiometry within our sample. Contrary to our predictions, we found weak evidence of N content decreasing with age. As well, sex appeared to have no relationship with hare body elemental composition. Conversely, as expected, P content increased with body size and condition. Finally, we found no relationship between variability in C content and any of our predictor variables.Snowshoe hare stoichiometry does not appear to vary with individual age, sex, body size, or condition. However, the weak relationship between body N concentration and age may suggest varying nutritional requirements of individuals at different ages. Conversely, body P's weak relationship to body size and condition appears in line with this limiting element's importance in terrestrial ecosystems. Snowshoe hares are keystone herbivores in the boreal forest of North America, and the substantial stoichiometric variability we find in our sample could have important implications for nutrient dynamics, in both boreal and adjacent ecosystems.

20.
Science ; 362(6419)2018 12 07.
Article in English | MEDLINE | ID: mdl-30523083

ABSTRACT

Predicting and managing the global carbon cycle requires scientific understanding of ecosystem processes that control carbon uptake and storage. It is generally assumed that carbon cycling is sufficiently characterized in terms of uptake and exchange between ecosystem plant and soil pools and the atmosphere. We show that animals also play an important role by mediating carbon exchange between ecosystems and the atmosphere, at times turning ecosystem carbon sources into sinks, or vice versa. Animals also move across landscapes, creating a dynamism that shapes landscape-scale variation in carbon exchange and storage. Predicting and measuring carbon cycling under such dynamism is an important scientific challenge. We explain how to link analyses of spatial ecosystem functioning, animal movement, and remote sensing of animal habitats with carbon dynamics across landscapes.


Subject(s)
Animal Migration , Atmosphere/chemistry , Carbon Cycle , Soil/chemistry , Animals , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...