Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microsyst Nanoeng ; 9: 59, 2023.
Article in English | MEDLINE | ID: mdl-37201103

ABSTRACT

The ability to control high-voltage actuator arrays relies, to date, on expensive microelectronic processes or on individual wiring of each actuator to a single off-chip high-voltage switch. Here we present an alternative approach that uses on-chip photoconductive switches together with a light projection system to individually address high-voltage actuators. Each actuator is connected to one or more switches that are nominally OFF unless turned ON using direct light illumination. We selected hydrogenated amorphous silicon (a-Si:H) as our photoconductive material, and we provide a complete characterization of its light to dark conductance, breakdown field, and spectral response. The resulting switches are very robust, and we provide full details of their fabrication processes. We demonstrate that the switches can be integrated into different architectures to support both AC and DC-driven actuators and provide engineering guidelines for their functional design. To demonstrate the versatility of our approach, we demonstrate the use of the photoconductive switches in two distinctly different applications-control of µm-sized gate electrodes for patterning flow fields in a microfluidic chamber and control of cm-sized electrostatic actuators for creating mechanical deformations for haptic displays.

2.
Adv Mater ; 32(36): e2002564, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32700326

ABSTRACT

The sense of touch is underused in today's virtual reality systems due to lack of wearable, soft, mm-scale transducers to generate dynamic mechanical stimulus on the skin. Extremely thin actuators combining both high force and large displacement are a long-standing challenge in soft actuators. Sub-mm thick flexible hydraulically amplified electrostatic actuators are reported here, capable of both out-of-plane and in-plane motion, providing normal and shear forces to the user's fingertip, hand, or arm. Each actuator consists of a fluid-filled cavity whose shell is made of a metalized polyester boundary and a central elastomer region. When a voltage is applied to the annular electrodes, the fluid is rapidly forced into the stretchable region, forming a raised bump. A 6 mm × 6 mm × 0.8 mm actuator weighs 90 mg, and generates forces of over 300 mN, out-of-plane displacements of 500 µm (over 60% strain), and lateral motion of 760 µm. Response time is below 5 ms, for a specific power of 100 W kg-1 . In user tests, human subjects distinguished normal and different 2-axis shear forces with over 80% accuracy. A flexible 5 × 5 array is demonstrated, integrated in a haptic sleeve.


Subject(s)
Static Electricity , Touch Perception , Wearable Electronic Devices , Biomechanical Phenomena , Equipment Design , Fingers , Humans
3.
Ultrasonics ; 54(6): 1610-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24726138

ABSTRACT

Multi-degree-of-freedom angular actuators are commonly used in numerous mechatronic areas such as omnidirectional robots, robot articulations or inertially stabilized platforms. The conventional method to design these devices consists in placing multiple actuators in parallel or series using gimbals which are bulky and difficult to miniaturize. Motors using a spherical rotor are interesting for miniature multidegree-of-freedom actuators. In this paper, a new actuator is proposed. It is based on a curved piezoelectric element which has its inner contact surface adapted to the diameter of the rotor. This adaptation allows to build spherical motors with a fully constrained rotor and without a need for additional guiding system. The work presents a design methodology based on modal finite element analysis. A methodology for mode selection is proposed and a sensitivity analysis of the final geometry to uncertainties and added masses is discussed. Finally, experimental results that validate the actuator concept on a single degree-of-freedom ultrasonic motor set-up are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...