Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
PLoS One ; 19(6): e0305912, 2024.
Article in English | MEDLINE | ID: mdl-38935642

ABSTRACT

Diet-induced obesity reduces oocyte quality mainly by impacting oocyte mitochondrial functions. Moreover, maternal obesity is associated with mitochondrial dysfunction in oocytes of their adult offspring. However, these effects were reported only in fully grown oocytes, mainly in the form of abnormal mitochondrial ultrastructure. It is unknown if obesogenic (OB) diets or maternal obesity already impact the primordial and preantral follicles. Considering the long duration and dynamics of folliculogenesis, determining the stage at which oocytes are affected and the extent of the damage is crucial for optimal reproductive management of obese patients and their daughters. Potential interaction between maternal and offspring diet effects are also not described, yet pivotal in our contemporary society. Therefore, here we examined the impact of OB diets on oocyte mitochondrial ultrastructure in primordial and activated preantral follicles in offspring from diet-induced obese or lean mothers. We used an outbred Swiss mouse model to increase the pathophysiological relevance to humans. Female mice were fed control or OB diets for 7 weeks, then mated with control males. Their female offspring were fed control or OB diets after weaning for 7 weeks (2-by-2 factorial design). Adult offspring ovarian sections were examined using transmission electron microscopy. We characterised and classified unique features of oocyte mitochondrial ultrastructure in the preantral follicles. An increase in mitochondrial matrix density was the most predominant change during follicle activation in secondary follicles, a feature that is linked with a higher mitochondrial activity. Maternal obesity increased mitochondrial density already in the primordial follicles suggesting an earlier increase in bioenergetic capacity. Maternal obesity did not induce abberant ultrastructure (abnormalities and defects) in primordial or preantral follicles. In contrast, offspring OB diet increased mitochondrial abnormalities in the primordial follicles. Further investigation of the consequences of these changes on oocyte metabolic regulation and stress levels during folliculogenesis is needed.


Subject(s)
Mitochondria , Oocytes , Ovarian Follicle , Animals , Oocytes/ultrastructure , Oocytes/metabolism , Female , Ovarian Follicle/metabolism , Ovarian Follicle/ultrastructure , Ovarian Follicle/pathology , Mice , Mitochondria/ultrastructure , Mitochondria/metabolism , Pregnancy , Obesity/etiology , Obesity/pathology , Obesity/metabolism , Male , Obesity, Maternal/metabolism , Prenatal Exposure Delayed Effects/pathology , Diet, High-Fat/adverse effects
2.
Front Physiol ; 15: 1354327, 2024.
Article in English | MEDLINE | ID: mdl-38585221

ABSTRACT

Consumption of obesogenic (OB) diets increases the prevalence of maternal obesity worldwide, causing major psychological and social burdens in women. Obesity not only impacts the mother's health and fertility but also elevates the risk of obesity and metabolic disorders in the offspring. Family lifestyle is mostly persistent through generations, possibly contributing to the growing prevalence of obesity. We hypothesized that offspring metabolic health is dependent on both maternal and offspring diet and their interaction. We also hypothesized that the sensitivity of the offspring to the diet may be influenced by the match or mismatch between offspring and maternal diets. To test these hypotheses, outbred Swiss mice were fed a control (C, 10% fat, 7% sugar, and n = 14) or OB diet (60% fat, 20% sugar, and n = 15) for 7 weeks and then mated with the same control males. Mice were maintained on the same corresponding diet during pregnancy and lactation, and the offspring were kept with their mothers until weaning. The study focused only on female offspring, which were equally distributed at weaning and fed C or OB diets for 7 weeks, resulting in four treatment groups: C-born offspring fed C or OB diets (C ¼ C and C ¼ OB) and OB-born offspring fed C or OB diets (OB ¼ C and OB ¼ OB). Adult offspring's systemic blood profile (lipid and glucose metabolism) and muscle mitochondrial features were assessed. We confirmed that the offspring's OB diet majorly impacted the offspring's health by impairing the offspring's serum glucose and lipid profiles, which are associated with abnormal muscle mitochondrial ultrastructure. Contrarily, maternal OB diet was associated with increased expression of mitochondrial complex markers and mitochondrial morphology in offspring muscle, but no additive effects of (increased sensitivity to) an offspring OB diet were observed in pups born to obese mothers. In contrast, their metabolic profile appeared to be healthier compared to those born to lean mothers and fed an OB diet. These results are in line with the thrifty phenotype hypothesis, suggesting that OB-born offspring are better adapted to an environment with high energy availability later in life. Thus, using a murine outbred model, we could not confirm that maternal obesogenic diets contribute to female familial obesity in the following generations.

3.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396912

ABSTRACT

Obese individuals often suffer from metabolic health disorders and reduced oocyte quality. Preconception diet interventions in obese outbred mice restore metabolic health and oocyte quality and mitochondrial ultrastructure. Also, studies in inbred mice have shown that maternal obesity induces metabolic alterations and reduces oocyte quality in offspring (F1). Until now, the effect of maternal high-fat diet on F1 metabolic health and oocyte quality and the potential beneficial effects of preconception dietary interventions have not been studied together in outbred mice. Therefore, we fed female mice a high-fat/high-sugar (HF/HS) diet for 7 weeks and switched them to a control (CONT) or caloric-restriction (CR) diet or maintained them on the HF/HS diet for 4 weeks before mating, resulting in three treatment groups: diet normalization (DN), CR, and HF/HS. In the fourth group, mice were fed CONT diet for 11 weeks (CONT). HF/HS mice were fed an HF/HS diet from conception until weaning, while all other groups were then fed a CONT diet. After weaning, offspring were kept on chow diet and sacrificed at 11 weeks. We observed significantly elevated serum insulin concentrations in female HF/HS offspring and a slightly increased percentage of mitochondrial ultrastructural abnormalities, mitochondrial size, and mitochondrial mean gray intensity in HF/HS F1 oocytes. Also, global DNA methylation was increased and cellular stress-related proteins were downregulated in HF/HS F1 oocytes. Mostly, these alterations were prevented in the DN group, while, in CR, this was only the case for a few parameters. In conclusion, this research has demonstrated for the first time that a maternal high-fat diet in outbred mice has a moderate impact on female F1 metabolic health and oocyte quality and that preconception DN is a better strategy to alleviate this compared to CR.


Subject(s)
Obesity, Maternal , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Mice , Animals , Obesity/metabolism , Diet, High-Fat/adverse effects , Obesity, Maternal/metabolism , Mitochondria/metabolism , Sugars/metabolism , Oocytes/metabolism , Mice, Inbred C57BL , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects/metabolism
4.
Reproduction ; 167(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38038651

ABSTRACT

In brief: Epigenetic programming is a crucial process during early embryo development that can have a significant impact on the results of assisted reproductive technology (ART) and offspring health. Here we show evidence using a bovine in vitro experiment that embryo epigenetic programing is dependent on oocyte mitochondrial bioenergetic activity during maturation. Abstract: This study investigated if oocyte and early embryo epigenetic programming are dependent on oocyte mitochondrial ATP production. A bovine in vitro experiment was performed in which oocyte mitochondrial ATP production was reduced using 5 nmol/L oligomycin A (OM; ATP synthase inhibitor) during in vitro maturation (IVM) compared to control (CONT). OM exposure significantly reduced mitochondrial ATP production rate in MII oocytes (34.6% reduction, P = 0.018) and significantly decreased embryo cleavage rate at 48 h post insemination (7.6% reduction, P = 0.031). Compared to CONT, global DNA methylation (5mC) levels were decreased in OM-exposed MII oocytes (9.8% reduction, P = 0.019) while global histone methylation (H3K9me2) was increased (9.4% increase, P = 0.024). In zygotes, OM exposure during IVM increased 5mC (22.3% increase, P < 0.001) and histone acetylation (H3K9ac, 17.3% increase, P = 0.023) levels, while H3K9me2 levels were not affected. In morulae, 5mC levels were increased (10.3% increase, P = 0.041) after OM exposure compared to CONT, while there was no significant difference in H3K9ac and H3K9me2 levels. These epigenetic alterations were not associated with any persistent effects on embryo mitochondrial ATP production rate or mitochondrial membrane potential (assessed at the four-cell stage). Also, epigenetic regulatory genes were not differentially expressed in OM-exposed zygotes or morulae. Finally, apoptotic cell index in blastocysts was increased after OM exposure during oocyte maturation (41.1% increase, P < 0.001). We conclude that oocyte and early embryo epigenetic programming are dependent on mitochondrial ATP production during IVM.


Subject(s)
Histones , In Vitro Oocyte Maturation Techniques , Animals , Cattle , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Epigenome , Oligomycins/pharmacology , Oocytes , Embryonic Development , Adenosine Triphosphate
5.
J Assist Reprod Genet ; 41(2): 371-383, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38146030

ABSTRACT

PURPOSE: Oxidative stress and mitochondrial dysfunction play central roles in reduced oocyte quality and infertility in obese patients. Mitochondria-targeted treatments containing co-enzyme Q10 such as mitoquinone (MitoQ) can increase mitochondrial antioxidative capacity; however, their safety and efficiency when supplemented to oocytes under lipotoxic conditions have not been described. METHODS: We tested the effect of different concentrations of MitoQ or its cationic carrier (TPP) (0, 0.1, 0.5, 1.0 µM each) during bovine oocyte IVM. Then, we tested the protective capacity of MitoQ (0.1 µM) against palmitic acid (PA)-induced lipotoxicity and mitochondrial dysfunction in oocytes. RESULTS: Exposure to MitoQ, or TPP only, at 1 µM significantly (P<0.05) reduced oocyte mitochondrial inner membrane potential (JC-1 staining) and resulted in reduced cleavage and blastocyst rates compared with solvent control. Lower concentrations of MitoQ or TPP had no effects on embryo development under control (PA-free) conditions. As expected, PA increased the levels of MMP and ROS in oocytes (CellROX staining) and reduced cleavage and blastocyst rates compared with the controls (P<0.05). These negative effects were ameliorated by 0.1 µM MitoQ. In contrast, 0.1 µM TPP alone had no protective effects. MitoQ also normalized the expression of HSP10 and TFAM, and partially normalized HSP60 in the produced blastocysts, indicating at least a partial alleviation of PA-induced mitochondrial stress. CONCLUSION: Oocyte exposure to MitoQ may disturb mitochondrial bioenergetic functions and developmental capacity due to a TPP-induced cationic overload. A fine-tuned concentration of MitoQ can protect against lipotoxicity-induced mitochondrial stress during IVM and restore developmental competence and embryo quality.


Subject(s)
In Vitro Oocyte Maturation Techniques , Mitochondrial Diseases , Organophosphorus Compounds , Ubiquinone/analogs & derivatives , Humans , Animals , Cattle , In Vitro Oocyte Maturation Techniques/methods , Oocytes , Blastocyst/metabolism , Embryonic Development , Mitochondria/metabolism
6.
Sci Rep ; 13(1): 21664, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066095

ABSTRACT

Maternal metabolic disorders may cause lipotoxic effects on the developing oocyte. Understanding the timing at which this might disrupt embryo epigenetic programming and how this is linked with mitochondrial dysfunction is crucial for improving assisted reproductive treatments, but has not been investigated before. Therefore, we used a bovine in vitro model to investigate if pathophysiological palmitic acid (PA) concentrations during in vitro oocyte maturation and in vitro embryo culture alter embryo epigenetic patterns (DNA methylation (5mC) and histone acetylation/methylation (H3K9ac/H3K9me2)) compared to control (CONT) and solvent control (SCONT), at the zygote and morula stage. Secondly, we investigated if these epigenetic alterations are associated with mitochondrial dysfunction and changes in ATP production rate, or altered expression of epigenetic regulatory genes. Compared to SCONT, H3K9ac and H3K9me2 levels were increased in PA-derived zygotes. Also, 5mC and H3K9me2 levels were increased in PA-exposed morulae compared to SCONT. This was associated with complete inhibition of glycolytic ATP production in oocytes, increased mitochondrial membrane potential and complete inhibition of glycolytic ATP production in 4-cell embryos and reduced SOD2 expression in PA-exposed zygotes and morulae. For the first time, epigenetic alterations in metabolically compromised zygotes and morulae have been observed in parallel with mitochondrial dysfunction in the same study.


Subject(s)
Mitochondrial Diseases , Oocytes , Animals , Cattle , Oocytes/metabolism , Mitochondria/metabolism , Epigenesis, Genetic , Mitochondrial Diseases/metabolism , Adenosine Triphosphate/metabolism , Blastocyst/metabolism
7.
Front Physiol ; 14: 1288472, 2023.
Article in English | MEDLINE | ID: mdl-37965107

ABSTRACT

Obesity affects oocyte mitochondrial functions and reduces oocyte quality and fertility. Obesity may also increase the risk of metabolic disorders in the offspring. Children are likely to follow their parents lifestyle and diet, which also contributes to the increased prevelance of obesity across generations. We hypothesise that the impact of obesogenic (OB) diet and obesity on oocyte mitochondrial functions is different in offspring born to obese mothers compared to those born to healthy mothers. To test this hypothesis, we fed a control (C, 10% fat, 7% sugar) or an OB diet (60% fat, 20% sugar) to female mice (for 7 weeks (w)) and then to their female offspring (for 7w after weaning) in a 2 × 2 factorial design (C ¼ C, n = 35, C ¼ OB, n = 35, OB ¼ C n = 49 and OB ¼ OB, n = 50). Unlike many other studies, we used an outbred Swiss mouse model to increase the human pathophysiological relevance. Offspring were sacrificed at 10w and their oocytes were collected. Offspring OB diet increased oocyte lipid droplet content, mitochondrial activity and reactive oxygen species (ROS) levels, altered mitochondrial ultrastructure and reduced oocyte pyruvate consumption. Mitochondrial DNA copy numbers and lactate production remained unaffected. Mitochondrial ultrastructure was the only factor where a significant interaction between maternal and offspring diet effect was detected. The maternal OB background resulted in a small but significant increase in offspring's oocyte mitochondrial ultrastructural abnormalities without altering mitochondrial inner membrane potential, active mitochondrial distribution, mitochondrial DNA copy numbers, or ROS production. This was associated with reduced mitochondrial complex III and V expression and reduced pyruvate consumption which may be compensatory mechanisms to control mitochondrial inner membrane potential and ROS levels. Therefore, in this Swiss outbred model, while offspring OB diet had the largest functional impact on oocyte mitochondrial features, the mitochondrial changes due to the maternal background appear to be adaptive and compensatory rather than dysfunctional.

8.
Biology (Basel) ; 12(7)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37508445

ABSTRACT

We investigated whether a high-fat/high-sugar (HF/HS) diet alters the lipidomic profile of the oviductal epithelium (OE) and studied the patterns of these changes over time. Female outbred Swiss mice were fed either a control (10% fat) or HF/HS (60% fat, 20% fructose) diet. Mice (n = 3 per treatment per time point) were sacrificed and oviducts were collected at 3 days and 1, 4, 8, 12 and 16 weeks on the diet. Lipids in the OE were imaged using matrix-assisted laser desorption ionisation mass spectrometry imaging. Discriminative m/z values and differentially regulated lipids were determined in the HF/HS versus control OEs at each time point. Feeding the obesogenic diet resulted in acute changes in the lipid profile in the OE already after 3 days, and thus even before the development of an obese phenotype. The changes in the lipid profile of the OE progressively increased and became more persistent after long-term HF/HS diet feeding. Functional annotation revealed a differential abundance of phospholipids, sphingomyelins and lysophospholipids in particular. These alterations appear to be not only caused by the direct accumulation of the excess circulating dietary fat but also a reduction in the de novo synthesis of several lipid classes, due to oxidative stress and endoplasmic reticulum dysfunction. The described diet-induced lipidomic changes suggest alterations in the OE functions and the oviductal microenvironment which may impact crucial reproductive events that take place in the oviduct, such as fertilization and early embryo development.

9.
Reproduction ; 166(2): R15-R24, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37294111

ABSTRACT

In brief: Clinical and subclinical endometritis are different manifestations of reproductive tract inflammatory disease in dairy cows. This review addresses the genesis of clinical and subclinical endometritis considering metabolic stress, innate immune dysfunction, and shifts in the composition of the uterine microbiota in the postpartum period. Abstract: Up to half of dairy cows may develop one or more types of reproductive tract inflammatory disease within 5 weeks after calving. Clinical endometritis (CE) results from uterine bacterial dysbiosis with increased relative abundance of pathogenic bacteria associated with luminal epithelial damage. These bacteria cause endometrial stromal cell lysis, followed by massive polymorphonuclear neutrophil (PMN) migration, and pyogenesis. CE is defined as endometrial inflammation accompanied by purulent discharge. Purulent discharge is not always accompanied by uterine inflammation (being (rarely) vaginitis or (commonly) cervicitis), hence referred to as purulent vaginal discharge (PVD). Subclinical endometritis (SCE) is an asymptomatic uterine disease defined by a threshold of PMN on cytology that is associated with worse reproductive performance; it has not been linked with bacterial dysbiosis. Current evidence suggests that SCE is a result of metabolic and inflammatory dysfunction that impairs innate immune function and the ability of endometrial PMN to undergo apoptosis, necrosis, and ultimately achieve resolution of inflammation. CE and SCE are diagnosed between 3 and 5 weeks postpartum and commonly overlap, but they are considered distinct manifestations of reproductive tract inflammatory disease. This review addresses the genesis of CE and SCE in postpartum dairy cows considering metabolic stress, innate immune dysfunction, and shifts in the composition of the uterine microbiota.


Subject(s)
Cattle Diseases , Endometritis , Animals , Female , Humans , Cattle , Endometritis/microbiology , Dysbiosis/pathology , Uterus/metabolism , Reproduction , Postpartum Period , Inflammation/pathology , Cattle Diseases/etiology , Cattle Diseases/diagnosis
10.
Vet Res Commun ; 47(4): 2221-2228, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37055645

ABSTRACT

The application of trans-vaginal ovum pick up (OPU) and intracytoplasmic sperm injection (ICSI) is well established for commercial in vitro embryo production in horses. These assisted reproductive techniques are especially applied during the non-breeding season of the mare. However, little is known about how the health of the oocyte donor may affect the biochemical composition of the follicular fluid (FF) in small and medium-sized follicles routinely aspirated during OPU. This study aimed to investigate associations between systemic and FF concentrations of interleukin-6 (IL-6), total cholesterol, triglycerides, non-esterified fatty acids (NEFA), reactive oxygen metabolites (d-ROMs), biological antioxidant potential (BAP), and oxidative stress index (OSI) during the non-breeding season in mares. At the slaughterhouse, serum and FF of small (5-10 mm in diameter), medium (> 10-20 mm in diameter), and large (> 20-30 mm in diameter) follicles were sampled from 12 healthy mares. There was a strong positive association (P < 0.01) between the concentration of IL-6 in serum and those measured in small (r = 0.846), medium (r = 0.999), and large (r = 0.996) follicles. Serum concentrations of NEFA were positively correlated (P < 0.05) with those measured in small (r = 0.726), medium (r = 0.720), and large (r = 0.974) follicles. Values of total cholesterol and OSI in serum and medium follicles were significantly associated (r = 0.736 and r = 0.696, respectively). The serum concentrations of all lipid metabolites were markedly higher than those measured in FF of small- and medium-sized follicles. Values of IL-6 and OSI did not change significantly between serum and all follicle classes (P ≥ 0.05). To conclude, changes in the blood composition associated with inflammation, oxidative stress, and disturbed lipid metabolism of mares may lead to an inadequate oocyte microenvironment, which could affect oocyte quality and the success rate of OPU/ICSI programs. Further research should indicate whether these changes may ultimately affect in vitro oocyte developmental capacity and subsequent embryo quality.


Subject(s)
Follicular Fluid , Interleukin-6 , Horses , Animals , Female , Male , Follicular Fluid/chemistry , Follicular Fluid/metabolism , Interleukin-6/analysis , Interleukin-6/metabolism , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/metabolism , Semen , Oxidative Stress , Cholesterol/analysis , Cholesterol/metabolism , Oocytes/metabolism
11.
J Dairy Sci ; 106(5): 3436-3447, 2023 May.
Article in English | MEDLINE | ID: mdl-36935235

ABSTRACT

We aimed to compare the viability of circulating polymorphonuclear leukocyte (cPMN) and endometrial PMN (ePMN) and their function dynamics in postpartum dairy cows with subclinical (SCE) or clinical endometritis (CE). To do so, blood samples from 38 Holstein cows were collected at -7, 9, 21, and 36 d relative to calving, and endometrial cytology samples from 32 Holstein cows were harvested at 9, 21, and 36 d postpartum. Uterine health status was assessed at 36 d postpartum, and cows were classified as healthy (absence of abnormal vaginal discharge and ≤5% ePMN), SCE (absence of abnormal vaginal discharge and >5% ePMN), or CE (mucopurulent or purulent vaginal discharge and >5% ePMN). Viability (viable, apoptotic, and necrotic) and function parameters phagocytosis (PC), oxidative burst, and intracellular proteolytic degradation were evaluated for cPMN via flow cytometry. For ePMN, only viability and PC were evaluated. The association of cPMN and ePMN viability and functional parameters with reproductive tract health classification were fitted in mixed linear regression models, accounting for repeated measures, sampling day, and interactions of reproductive tract status and day. Cows with CE had a lower proportion of cPMN viability (84.5 ± 2.1%; least squares means ± standard error) and a higher proportion of apoptosis (14.4 ± 2.0%) than healthy (92.4 ± 1.3 and 6.7 ± 1.3%, respectively) or SCE (95.3 ± 2.4 and 3.8 ± 2.3%, respectively) at 9 d postpartum. Interestingly, cPMN intracellular proteolytic degradation was lower [6.2 ± 0.1 median fluorescence intensity (MFI)] in SCE compared with healthy (6.7 ± 0.08 MFI) or CE (6.8 ± 0.1 MFI) at d 9 postpartum. No other differences in cPMN function were found among experimental groups. The proportion of necrotic ePMN was higher for healthy (49.6 ± 5.1%) than SCE (27.4 ± 7.3%) and CE (27.7 ± 7.3%) cows at 36 d postpartum. Also, at 36 d postpartum, the proportion of ePMN performing PC was higher in CE (47.0 ± 8.6%) than in healthy (18.4 ± 7.6%) cows, but did not differ from SCE cows (25.9 ± 8.7%). Results of the present study suggest that cPMN viability and function at 9 d postpartum are associated with the development of uterine disease. Furthermore, ePMN at 36 d postpartum are mostly necrotic in healthy cows but viable and functional in cows with CE, probably due to active uterine inflammation. Remarkably, ePMN in cows with SCE at 36 d postpartum are also mostly viable but seem to display a numerically lower proportion of PC compared with ePMN in CE cows.


Subject(s)
Cattle Diseases , Endometritis , Vaginal Discharge , Female , Cattle , Animals , Endometritis/veterinary , Neutrophils , Postpartum Period , Endometrium , Vaginal Discharge/veterinary
12.
Anim Reprod Sci ; 249: 107185, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36610102

ABSTRACT

The ovary and its hormones may have major effects on the in vitro developmental capacity of the oocytes it contains. We related intrinsic ovarian factors namely the presence of corpus luteum (CL) and/or dominant follicle (>8 mm) and the follicular count to cumulus expansion (CE), embryo development, and blastocyst quality in a bovine model. Cumulus-oocyte-complexes (COCs) were aspirated from follicles between 4 and 8 mm in diameter. In vitro embryo production was performed in a fully individual production system. The follicular fluid from which COCs were collected was pooled (per ovary) to evaluate the estrogen, progesterone, and insulin-like growth factor-1 (IGF-1) concentrations. Cumulus oocyte complexes collected from ovaries without a CL presented a greater CE than COCs derived from ovaries bearing CL. The absence of ovarian structures increased the blastocyst rate when compared to oocytes derived from ovaries with a CL, a dominant follicle, or both. Blastocysts derived from ovaries without a dominant follicle presented higher total cell numbers and a lower proportion of apoptosis than blastocysts derived from ovaries containing a dominant follicle. Cumulus oocyte complexes collected from ovaries with high follicular count resulted in higher cleavage than from ovaries with low follicular count, but the blastocyst rate was similar between groups. Ovaries bearing a CL had greater progesterone and IGF-1 follicular fluid concentrations in neighboring follicles than ovaries without a CL. Selection for bovine ovaries without CL or dominant follicle can have positive effects on CE, embryo development, and blastocyst quality in an individual embryo production system set-up.


Subject(s)
Insulin-Like Growth Factor I , Ovary , Female , Animals , Cattle , Progesterone , Ovarian Follicle , Oocytes
13.
Anim Reprod ; 19(4): e20220097, 2022.
Article in English | MEDLINE | ID: mdl-36570681

ABSTRACT

Prior to implantation in cattle, the mucous medium contained in the uterine lumen serves as a working interface for molecular exchange and signaling between the lining endometrium and the embryo. The composition of this luminal fluid changes temporally according to the secretory and reabsorptive activities of the uterus and the embryo, which are under complex regulation. Via this interface, both the embryo and the endometrium reprogram each other's functions to support pregnancy continuation beyond the pre-implantation period. More specifically, the embryo receives elongation signals and the uterus receives anti-luteolytic stimuli. Here, characteristics of the luminal compartment as well as the regulation of its composition to determine the pregnancy outcome will be discussed.

14.
PLoS One ; 17(9): e0275379, 2022.
Article in English | MEDLINE | ID: mdl-36174086

ABSTRACT

RESEARCH QUESTION: How long does it take for an obesogenic (high-fat/high-sugar, HF/HS) diet to influence the oviductal microenvironment? What are the affected cellular pathways and are they dependent on the genetic background of the mouse model? DESIGN: Female Swiss (outbred) and C57BL/6N (B6, inbred) mice were fed either a control (10% fat) or HF/HS (60% fat, 20% fructose) diet. Body weight was measured weekly. Mice were sacrificed at 3 days (3d), 1 week (1w), 4w, 8w, 12w and 16w on the diet (n = 5 per treatment per time point). Total cholesterol concentrations and inflammatory cytokines were measured in serum. Oviductal epithelial cells (OECs) were used to study the expression of genes involved in (mitochondrial) oxidative stress (OS), endoplasmic reticulum (ER) stress and inflammation using qPCR. RESULTS: Body weight and blood cholesterol increased significantly in the HF/HS mice in both strains compared to controls. In Swiss mice, HF/HS diet acutely increased ER-stress and OS-related genes in the OECs already after 3d. Subsequently, mitochondrial and cytoplasmic antioxidants were upregulated and ER-stress was alleviated at 1w. After 4-8w (mid-phase), the expression of ER-stress and OS-related genes was increased again and persisted throughout the late-phase (12-16w). Serum inflammatory cytokines and inflammatory marker-gene expression in the OECs were increased only in the late-phase. Some of the OEC stress responses were stronger or earlier in the B6. CONCLUSIONS: OECs are sensitive to an obesogenic diet and may exhibit acute stress responses already after a few days of feeding. This may impact the oviductal microenvironment and contribute to diet-induced subfertility.


Subject(s)
Antioxidants , Oviducts , Animals , Body Weight , Cholesterol , Cytokines , Diet , Female , Fructose , Humans , Inflammation , Mice , Mice, Inbred C57BL
15.
J Dairy Sci ; 105(8): 6956-6972, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35840405

ABSTRACT

In this study, we hypothesized that early postpartum (pp) metabolic and oxidative stress conditions in dairy cows (particularly those with severe negative energy balance, NEB) are associated with long-term changes in granulosa cell (GC) functions in the preovulatory follicle at the time of breeding. Blood samples were collected at wk 2 and wk 8 pp from 47 healthy multiparous cows. Follicular fluid (FF) and GC were collected from the preovulatory follicle after estrous synchronization at wk 8. Several metabolic and antioxidant parameters were measured in blood and FF, and their correlations were studied. Subsequently, 27 representative GC samples were selected for RNA sequencing analysis. The GC gene expression data of LH-responsive genes and the estradiol:progesterone ratio in FF were used to identify pre- and post-LH surge cohorts. We compared the transcriptomic profile of subgroups of cows within the highest and lowest quartiles (Q4 vs. Q1) of each parameter, focusing on the pre-LH surge cohort (n = 16, at least 3 in each subgroup). Differentially expressed genes (DEG: adjusted P-value < 0.05, 5% false discovery rate) were determined using DESeq2 analysis and were functionally annotated. Blood and FF ß-carotene and vitamin E concentrations at wk 2, but not at wk 8, were associated with the most pronounced transcriptomic differences in the GC, with up to 341 DEG indicative for lower catabolism, increased oxidoreductase activity and signaling cascades that are known to enhance oocyte developmental competence, increased responsiveness to LH, and a higher steroidogenic activity. In contrast, elevated blood NEFA concentrations at wk 2 (and not at wk 8) were associated with a long-term carryover effect detectable in the GC transcriptome at wk 8 (64 DEG). These genes are related to response to lipids and ketones, oxidative stress, and immune responses, which suggests persistent cellular stress and oxidative damage. This effect was more pronounced in cows with antioxidant deficiencies at wk 8 (up to 148 DEG), with more genes involved in oxidative stress-dependent responses, apoptosis, autophagy and catabolic processes, and mitochondrial damage. Interestingly, within the severe NEB cows (high blood NEFA at wk 2), blood antioxidant concentrations (high vs. low) at wk 8 were associated with up to 194 DEG involved in activation of meiosis and other signaling pathways, indicating a better oocyte supportive capacity. This suggests that the cow antioxidant profile at the time of breeding might alleviate, at least in part, the effect of NEB on GC functions. In conclusion, these results provide further evidence that the metabolic and oxidative stress in dairy cows early postpartum can have long-term effects on GC functions in preovulatory follicles at the time of breeding. The interplay between the effects of antioxidants and NEFA illustrated here might be useful to develop intervention strategies to minimize the effect of severe NEB on fertility.


Subject(s)
Antioxidants , Transcriptome , Animals , Antioxidants/metabolism , Breeding , Cattle , Fatty Acids, Nonesterified , Female , Granulosa Cells/metabolism , Humans , Lactation/physiology , Postpartum Period/metabolism
16.
Reprod Domest Anim ; 57 Suppl 4: 21-32, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35686392

ABSTRACT

After parturition, dairy cows undergo a plethora of metabolic, inflammatory, and immunologic changes to adapt to the onset of lactation. These changes are mainly due to the homeorhetic shift to support milk production when nutrient demand exceeds dietary intake, resulting in a state of negative energy balance. Negative energy balance in postpartum dairy cows is characterized by upregulated adipose tissue modelling, insulin resistance, and systemic inflammation. However, half of the postpartum cows fail to adapt to these changes and develop one or more types of clinical and subclinical disease within 5 weeks after calving, and this is escorted by impaired reproductive performance in the same lactation. Maladaptation to the transition period exerts molecular and structural changes in the follicular and reproductive tract fluids, the microenvironment in which oocyte maturation, fertilization, and embryo development occur. Although the negative effects of transition diseases on fertility are well-known, the involved pathways are only partially understood. This review reconstructs the mechanism of maladaptation to lactation in the transition period, explores their key (patho)physiological effects on reproductive organs, and briefly describes potential carryover effects on fertility in the same lactation.


Subject(s)
Lactation , Milk , Animals , Cattle , Diet/veterinary , Energy Metabolism/physiology , Female , Fertility/physiology , Lactation/physiology , Milk/chemistry , Postpartum Period/metabolism , Reproduction
17.
Adv Exp Med Biol ; 1387: 171-189, 2022.
Article in English | MEDLINE | ID: mdl-34921349

ABSTRACT

The oocyte may be exposed to several sources of stress during its growth and maturation, which may lead to reduced fertility. Unfolded protein responses (UPRs) play a central role to maintain cell survival and repair. Transcription of heat shock proteins (HSPs) is a key element to facilitate reestablishment of cellular homeostasis. Unlike somatic cells, cellular mechanisms by which oocytes can sense and respond to stress are not well described. In here, we provide an overview about the impact of cellular stress, particularly due to lipotoxicity, oxidative stress, and heat stress on oocyte developmental competence. Next, we focus on the expression of HSPs in oocytes and their potential role in UPRs in oocytes and embryos. This is based on a comprehensive shotgun proteomic analysis of mature bovine oocytes performed in our laboratory, as well as a literature review. The topic is discussed in light of our understanding of similar mechanisms in other cell types and the limited transcriptional activity in oocytes. More fundamental research is needed both at the transcriptomic and proteomic levels to further understand cell stress response mechanisms in oocytes and early developing embryos, their critical interactions, and their long-term effects. Strategies to provide targeted external support to prevent or reduce cell stress levels during oocyte maturation or early embryo development under maternal metabolic stress conditions should be developed to maximize the odds of producing good quality embryos and guarantee optimal viability.


Subject(s)
Oocytes , Proteomics , Animals , Cattle , Embryonic Development/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Response/genetics , Oogenesis
18.
Reprod Biol Endocrinol ; 19(1): 166, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34736458

ABSTRACT

BACKGROUND: Maternal metabolic disorders are linked to reduced metabolic health and oocyte quality. Obese women are advised to lose weight before conception to increase pregnancy chances. However, as human studies show no univocal guidelines, more research is necessary to provide fundamental insights in the consequences of dietary weight loss on oocyte quality. Therefore, we investigated the impact of diet normalization or calorie restricted diet for two, four or six weeks, as preconception care intervention (PCCI), in obese mice on metabolic health and oocyte quality. METHODS: Outbred female mice were fed a control (CTRL) or high-fat (HF) diet for 7 weeks (7w). Afterwards, HF-mice were put on different PCCIs, resulting in four treatment groups: 1) control diet up to 13w, 2) HF diet up to 13w (HF_HF), switch from a HF (7w) to 3) an ad libitum control diet (HF_CTRL) or 4) 30% calorie restricted control diet (HF_CR) for two, four or six weeks. Body weight, metabolic health, oocyte quality and overall fertility results were assessed. RESULTS: Negative effects of HF diet on metabolic health, oocyte quality and pregnancy rates were confirmed. HF_CTRL mice progressively improved insulin sensitivity, glucose tolerance, serum insulin and cholesterol from PCCI w2 to w4. No further improvements in metabolic health were present at PCCI w6. However, PCCI w6 showed best oocyte quality improvements. Mature oocytes still showed elevated lipid droplet volume and mitochondrial activity but a significant reduction in ROS levels and ROS: active mitochondria ratio compared with HF_HF mice. HF_CR mice restored overall insulin sensitivity and glucose tolerance by PCCI w4. However, serum insulin, cholesterol and ALT remained abnormal. At PCCI w6, glucose tolerance was again reduced. However, only at PCCI w6, oocytes displayed reduced ROS levels and restored mitochondrial activity compared with HF_HF mice. In addition, at PCCI w6, both PCCI groups showed decreased mitochondrial ultrastructural abnormalities compared with the HF_HF group and restored pregnancy rates. CONCLUSIONS: Diet normalization for 4 weeks showed to be the shortest, most promising intervention to improve metabolic health. Most promising improvements in oocyte quality were seen after 6 weeks of intervention in both PCCI groups. This research provides fundamental insights to be considered in developing substantiated preconception guidelines for obese women planning for pregnancy.


Subject(s)
Caloric Restriction/methods , Diet, High-Fat/adverse effects , Metabolic Diseases/metabolism , Obesity/metabolism , Oocytes/metabolism , Preconception Care/methods , Animals , Blood Glucose/metabolism , Female , Insulin/metabolism , Metabolic Diseases/diet therapy , Mice , Mice, Inbred C57BL , Obesity/diet therapy , Pregnancy , Weight Loss/physiology
19.
Theriogenology ; 166: 38-45, 2021 May.
Article in English | MEDLINE | ID: mdl-33684781

ABSTRACT

We evaluated the effect of supplementation of different concentrations of bovine follicular fluid (FF) during in vitro maturation (IVM) on oocyte development and blastocyst quality in group and individual culture conditions. To do so, in vitro maturation medium (TCM-199 with 20 ng/mL epidermal growth factor and 50 µg/mL gentamycin) was supplemented with 0 (control), 1, 5, or 10% of FF. Follicular fluid was collected from slaughterhouse-derived ovaries, selecting follicles between 12 and 20 mm in diameter. Oocytes were either produced in groups or individually matured, fertilized, and cultured to the blastocyst stage, allowing for separate follow-up of each oocyte. Development (cleavage and blastocyst rates) among experimental groups were fitted in mixed-effects models, and blastocyst quality parameters (assessed via differential apoptotic staining) were evaluated in mixed linear regression models. We also assessed the cumulus expansion (prior and after maturation) for individual culture conditions, and their difference was fitted in mixed linear regression models. The FF was collected from two batches, with an estradiol/progesterone ratio higher than 1. The FF batch did not affect the development or blastocyst quality in group or individual culture conditions (P > 0.05). In group culture, development was similar among experimental groups (P > 0.05). Five or 10% of FF supplementation improved (P ˂ 0.05) aspects of blastocyst quality such as total cell numbers (TCN), trophectoderm (TE), inner cell mass (ICM), and ICM/TCN and apoptotic cells/TCN ratio in comparison to control. In the individual culture system, 5% FF supplementation increased (P ˂ 0.05) day 8 blastocyst rate (33 ± 3.4% (LSM ± SE)) in comparison to control (20 ± 2.7%) and 1% FF supplementation (19 ± 2.6%) but it was not different (P > 0.05) from 10% FF supplementation (28 ± 3.4%). Five percent of FF supplementation resulted in greater TCN, ICM, and ICM/TCN than control (P ˂ 0.05). It also resulted in a greater expansion of cumulus cell investment than the other groups (P ˂ 0.05), with a 3-fold increase compared to control. In conclusion, 5% of FF supplementation during IVM improved the cumulus expansion and the blastocyst development and quality in an individual culture system. However, FF supplementation during maturation in a group culture system did not increase development, but it modestly improved some embryo quality aspects when 5 or 10% of FF was added.


Subject(s)
Embryonic Development , Follicular Fluid , Animals , Blastocyst , Cattle , Cumulus Cells , Female , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...