Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22278727

ABSTRACT

BackgroundCOVID-19 infection in pregnant people has previously been shown to increase the risk for poor maternal-fetal outcomes. Despite this, there has been a lag in COVID-19 vaccination in pregnant people due to concerns over the potential effects of the vaccine on maternal-fetal outcomes. Here we examine the impact of COVID-19 vaccination and booster on maternal COVID-19 breakthrough infections and birth outcomes. MethodsThis was a retrospective multicenter cohort study on the impact of COVID-19 vaccination on maternal-fetal outcomes for people that delivered (n=86,833) at Providence St. Joseph Health across Alaska, California, Montana, Oregon, New Mexico, Texas, and Washington from January 26, 2021 through July 11, 2022. Cohorts were defined by vaccination status at time of delivery: unvaccinated (n=48,492), unvaccinated propensity score matched (n=26,790), vaccinated (n=26,792; two doses of mRNA-1273 Moderna or BNT162b2 Pfizer-BioNTech), and/or boosted (n=7,616). The primary outcome was maternal COVID-19 infection. COVID-19 vaccination status at delivery, COVID-19 infection-related health care, preterm birth (PTB), stillbirth, very low birth weight (VLBW), and small for gestational age (SGA) were evaluated as secondary outcomes. FindingsVaccinated pregnant people were significantly less likely to have a maternal COVID-19 infection than unvaccinated matched (p<0.0001) pregnant people. During a maternal COVID-19 infection, vaccinated pregnant people had similar rates of hospitalization (p=0.23), but lower rates of supplemental oxygen (p<0.05) or vasopressor (p<0.05) use than those in an unvaccinated matched cohort. Compared to an unvaccinated matched cohort, vaccinated people had significantly lower stillbirth rate (p<0.01) as well as no difference in rate of PTB (p=0.35), SGA (p=0.79), or rate of VLBW (>1,500 g; 0.31). Vaccinated people who were boosted had significantly lower rates of maternal COVID-19 infections (p<0.0001), COVID-19 related hospitalization (p<0.05), PTB (p<0.05), stillbirth (p<0.01), SGA (p<0.05), and VLBW (p<0.01), compared to vaccinated people that did not receive a third booster dose five months after completing the initial vaccination series. InterpretationCOVID-19 vaccination protects against adverse maternal-fetal outcomes with booster doses conferring additional protection against COVID-19 infection. It is therefore important for pregnant people to have high priority status for vaccination, and for them to stay current with their COVID-19 vaccination schedule. FundingThis study was funded by the National Institute for Child Health & Human Development and the William O. and K. Carole Ellison Foundation.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21254004

ABSTRACT

The immunological picture of how different patients recover from COVID-19, and how those recovery trajectories are influenced by infection severity, remain unclear. We investigated 140 COVID-19 patients from diagnosis to convalescence using clinical data, viral load assessments, and multi-omic analyses of blood plasma and circulating immune cells. Immune-phenotype dynamics resolved four recovery trajectories. One trajectory signals a return to pre-infection healthy baseline, while the other three are characterized by differing fractions of persistent cytotoxic and proliferative T cells, distinct B cell maturation processes, and memory-like innate immunity. We resolve a small panel of plasma proteins that, when measured at diagnosis, can predict patient survival and recovery-trajectory commitment. Our study offers novel insights into post-acute immunological outcomes of COVID-19 that likely influence long-term adverse sequelae.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-224063

ABSTRACT

Host immune responses play central roles in controlling SARS-CoV2 infection, yet remain incompletely characterized and understood. Here, we present a comprehensive immune response map spanning 454 proteins and 847 metabolites in plasma integrated with single-cell multi-omic assays of PBMCs in which whole transcriptome, 192 surface proteins, and T and B cell receptor sequence were co-analyzed within the context of clinical measures from 50 COVID19 patient samples. Our study reveals novel cellular subpopulations, such as proliferative exhausted CD8+ and CD4+ T cells, and cytotoxic CD4+ T cells, that may be features of severe COVID-19 infection. We condensed over 1 million immune features into a single immune response axis that independently aligns with many clinical features and is also strongly associated with disease severity. Our study represents an important resource towards understanding the heterogeneous immune responses of COVID-19 patients and may provide key information for informing therapeutic development.

SELECTION OF CITATIONS
SEARCH DETAIL
...