Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biochemistry ; 61(19): 2159-2164, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36126313

ABSTRACT

4-Formylaminooxyvinylglycine (FVG) is an herbicidal and antibacterial nonproteinogenic amino acid produced by several strains of the Pseudomonas fluorescens species complex. It contains a unique vinyl alkoxyamine moiety with an O-N bond, and its biosynthetic origin remains unknown. Here, we show that the gvg cluster from P. fluorescens WH6 is responsible for the biosynthesis of FVG and two additional O-N bond-containing oxyvinylglycines, guanidinooxyvinylglycine and aminooxyvinylglycine. Feeding studies in the producing bacteria indicate that these compounds originate from homoserine. We identify a formyltransferase gvgI that is required for the production of FVG and characterize the activity of this enzyme in vitro toward amino acids with a side chain amine. Sequence similarity network analysis reveals that GvgI and homologues make up a distinct group from the main classes of formyltransferases.


Subject(s)
Hydroxymethyl and Formyl Transferases , Pseudomonas fluorescens , Amines/metabolism , Amino Acids/metabolism , Anti-Bacterial Agents/metabolism , Glycine , Homoserine , Hydroxymethyl and Formyl Transferases/metabolism
2.
Org Lett ; 21(13): 4955-4959, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31247735

ABSTRACT

Azabicyclene, an azetidine-containing natural product, was identified using quorum-sensing molecules to upregulate expression of a gene cluster highly conserved in the human pathogen Pseudomonas aeruginosa. Mutational studies of the gene cluster revealed essential genes for biosynthesis, including an unusual nonribosomal peptide synthetase. Reconstitution of this enzyme in vitro identified key biosynthetic intermediates. This work demonstrates a useful strategy for discovering quorum-sensing-regulated natural products. It sets the stage for understanding the biosynthesis and bioactivity of azabicyclene.


Subject(s)
Conserved Sequence , Drug Discovery , Peptides/metabolism , Pseudomonas aeruginosa/metabolism , Amino Acid Sequence , Peptides/chemistry
3.
Front Mol Neurosci ; 11: 323, 2018.
Article in English | MEDLINE | ID: mdl-30760979

ABSTRACT

Despite progress, our understanding of psychiatric and neurological illnesses remains poor, at least in part due to the inability to access neurons directly from patients. Currently, there are in vitro models available but significant work remains, including the search for a less invasive, inexpensive and rapid method to obtain neuronal-like cells with the capacity to deliver reproducible results. Here, we present a new protocol to transdifferentiate human circulating monocytes into neuronal-like cells in 20 days and without the need for viral insertion or reprograming. We have thoroughly characterized these monocyte-derived-neuronal-like cells (MDNCs) through various approaches including immunofluorescence (IF), flow cytometry, qRT-PCR, single cell mRNA sequencing, electrophysiology and pharmacological techniques. These MDNCs resembled human neurons early in development, expressed a variety of neuroprogenitor and neuronal genes as well as several neuroprogenitor and neuronal proteins and also presented electrical activity. In addition, when these neuronal-like cells were exposed to either dopamine or colchicine, they responded similarly to neurons by retracting their neuronal arborizations. More importantly, MDNCs exhibited reproducible differentiation rates, arborizations and expression of dopamine 1 receptors (DR1) on separate sequential samples from the same individual. Differentiation efficiency measured by cell morphology was on average 11.9 ± 1.4% (mean, SEM, n = 38,819 cells from 15 donors). To provide context and help researchers decide which in vitro model of neuronal development is best suited to address their scientific question,we compared our results with those of other in vitro models currently available and exposed advantages and disadvantages of each paradigm.

4.
Front Mol Neurosci ; 8: 57, 2015.
Article in English | MEDLINE | ID: mdl-26483630

ABSTRACT

Several lines of evidence indicate that schizophrenia has a strong genetic component. But the exact nature and functional role of this genetic component in the pathophysiology of this mental illness remains a mystery. Long non-coding RNAs (lncRNAs) are a recently discovered family of molecules that regulate gene transcription through a variety of means. Consequently, lncRNAs could help us bring together apparent unrelated findings in schizophrenia; namely, genomic deficiencies on one side and neuroimaging, as well as postmortem results on the other. In fact, the most consistent finding in schizophrenia is decreased brain size together with enlarged ventricles. This anomaly appears to originate from shorter and less ramified dendrites and axons. But a decrease in neuronal arborizations cannot explain the complex pathophysiology of this psychotic disorder; however, dynamic changes in neuronal structure present throughout life could. It is well recognized that the structure of developing neurons is extremely plastic. This structural plasticity was thought to stop with brain development. However, breakthrough discoveries have shown that neuronal structure retains some degree of plasticity throughout life. What the neuroscientific field is still trying to understand is how these dynamic changes are regulated and lncRNAs represent promising candidates to fill this knowledge gap. Here, we present evidence that associates specific lncRNAs with schizophrenia. We then discuss the potential role of lncRNAs in neurostructural dynamics. Finally, we explain how dynamic neurostructural modifications present throughout life could, in theory, reconcile apparent unrelated findings in schizophrenia.

SELECTION OF CITATIONS
SEARCH DETAIL
...