Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 54(17): 10514-10523, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32786594

ABSTRACT

Unregulated chlorocarbons, here defined as dichloromethane (CH2Cl2), perchloroethene (C2Cl4), chloroform (CHCl3), and methyl chloride (CH3Cl), are gases not regulated by the Montreal Protocol. While CH3Cl is the largest contributor of atmospheric chlorine, recent studies have shown that growth in emissions of the less abundant chlorocarbons could pose a significant threat to the recovery of the ozone layer. Despite this, there remain many regions for which no atmospheric monitoring exists, leaving gaps in our understanding of global emissions. Here, we report on a new time series of chlorocarbon measurements from Cape Point, South Africa for 2017, which represent the first published high-frequency measurements of these gases from Africa. For CH2Cl2 and C2Cl4, the majority of mole fraction enhancements were observed from the north, consistent with anthropogenically modified air from Cape Town, while for CHCl3 and CH3Cl, we found evidence for both oceanic and terrestrial sources. Using an inverse method, we estimated emissions for south-western South Africa (SWSA). For each chlorocarbon, SWSA accounted for less than 1% of global emissions. For CH2Cl2 and C2Cl4, we extrapolated using population statistics and found South African emissions of 8.9 (7.4-10.4) Gg yr-1 and 0.80 (0.64-1.04) Gg yr-1, respectively.


Subject(s)
Air Pollutants , Africa, Western , Air Pollutants/analysis , Chloroform , South Africa
2.
Environ Sci Technol ; 53(15): 8967-8975, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31251602

ABSTRACT

One hydrochlorofluorocarbon and two hydrofluorocarbons (HCFC-22, HFC-125, and HFC-152a) were measured in air samples at the Cape Point observatory (CPT), South Africa, during 2017. These data represent the first such atmospheric measurements of these compounds from southwestern South Africa (SWSA). Baseline atmospheric growth rates were estimated to be 8.36, 4.10, and 0.71 ppt year-1 for HCFC-22, HFC-125, and HFC-152a, respectively. The CPT measurements were combined with an inverse model to investigate emissions from SWSA. For all three halocarbons, Cape Town was found to be the dominant source within SWSA. These estimates were extrapolated, based on population statistics, to estimate emissions for the whole of South Africa. We estimate South Africa's 2017 emissions to be 3.0 (1.6-4.4), 0.8 (0.5-1.2), and 1.1 (0.6-1.6) Gg year-1 for HCFC-22, HFC-125, and HFC-152a, respectively. For all three halocarbons, South Africa's contribution to global emissions is small (<2.5%), but future monitoring is needed to ensure South Africa's compliance with regulation set out by the Montreal Protocol and its Amendments.


Subject(s)
Air Pollutants , Fluorocarbons , Hydrocarbons, Halogenated , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...