Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 38(19): 3720-40, 1995 Sep 15.
Article in English | MEDLINE | ID: mdl-7562904

ABSTRACT

Four related series of substituted quinoxalinediones containing angular fused-piperidine rings have been synthesized as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists with potential as neuroprotective agents, primarily for acute therapy immediately following a stroke. The compounds were tested for their affinity to the AMPA, kainate, and strychnine-insensitive glycine receptor sites. In AMPA binding, the most potent compound was 27a (PNQX, IC50 = 63 nM), with affinity comparable to the literature standard 1 (NBQX, IC50 = 52 nM). Other 6-nitro analogs from the 9-aza series had comparable affinity at the AMPA receptor, as did 6-nitro-8-aza derivatives such as 13a (iPNQX, IC50 = 290 nM). The receptor binding profile of 27a differed from that of 1 in that 27a possessed significant affinity at the glycine site of the N-methyl-D-aspartate (NMDA) receptor, whereas 1 was essentially inactive. Three compounds, 26c, 26d, and 26e, demonstrated moderate selectivity for kainate relative to AMPA receptors. Selected analogs reported herein as well as in the literature were superimposed to generate an AMPA pharmacophore model, and 6-substituted compounds from the PNQX and iPNQX series were combined and analyzed via quantitative structure-activity relationship techniques. Compounds with high affinity at non-NMDA receptors were further characterized in functional assays in neuronal cell culture and in a cortical wedge preparation. Both 1 and 27a showed comparable effectiveness in an AMPA- and kainate-induced excitoxicity assay. Both inhibited AMPA-induced depolarizations in the cortical wedge. However, 27a also inhibited spontaneous epileptiform discharges in the cortical wedge (reversed by glycine), while 1 was ineffective. The combination of AMPA and NMDA antagonist activity may contribute to the 30-fold difference in potency between 27a and 1 in the maximal electroshock convulsant assay in mice. The significant in vivo potency of 27a suggests that it has potential clinical utility.


Subject(s)
Anticonvulsants/chemical synthesis , Excitatory Amino Acid Antagonists/chemical synthesis , Quinoxalines/chemical synthesis , Quinoxalines/pharmacology , Receptors, AMPA/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Anticonvulsants/chemistry , Anticonvulsants/metabolism , Anticonvulsants/pharmacology , Binding Sites , Binding, Competitive , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Computer Graphics , Excitatory Amino Acid Antagonists/chemistry , Excitatory Amino Acid Antagonists/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Glycine/metabolism , Kainic Acid/metabolism , Mice , Models, Molecular , Molecular Structure , Neurons/cytology , Neurons/drug effects , Quinoxalines/chemistry , Quinoxalines/metabolism , Rats , Rats, Wistar , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Regression Analysis , Structure-Activity Relationship , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
2.
J Med Chem ; 36(14): 1977-95, 1993 Jul 09.
Article in English | MEDLINE | ID: mdl-8336337

ABSTRACT

A novel series of octahydrophenanthrenamines and their heterocyclic analogues have been synthesized as potential noncompetitive antagonists of the N-methyl-D-aspartate (NMDA) receptor complex. The compounds were evaluated for their affinity at the phencyclidine (PCP) binding site by determining their ability to displace [3H]TCP from crude rat brain synaptic membranes. A wide range of affinities were observed, with the most potent analogs possessing IC50's equivalent to that of the reference agent MK-801 (3, dizocilpine). NMDA antagonist activity was demonstrated by prevention of glutamate-induced accumulation of [45Ca2+] in cultured rat cortical neurons. Selected compounds were also studied in vivo to determine their ability to prevent the lethal effects of systemically injected NMDA in the mouse. In general, the SAR of the phenanthrenamine series may be summarized as follows: (a) for the amino group at C4a, NHMe > NH2 > NHEt >> NC5H10; (b) for the B-ring substitution, X = CH2 > S > O; (c) unsaturation of the C ring decreases receptor affinity; (d) cis-ring fusion between the B and C rings is desirable; (e) 6-hydroxy or 6-methoxy substitution of the phenanthrenamine system identified an additional hydrogen bonding interaction that substantially increased receptor affinity; (f) spiro analogues (such as 55, IC50 = 3400 nM), which altered the point of attachment of the C ring, caused a substantial reduction in PCP-site affinity. Molecules from this series were useful for refining a pharmacophore model consistent with previous models of the PCP site. In this model, the (R)-(+)-phenanthrenamine 13 superimposes closely onto MK-801 (3), and the angular 4a-amino group is believed to hydrogen bond with a putative receptor site atom. In the phenanthrenamine and thiaphenanthrenamine series, the (R)-(+)-enantiomers (9, 13, and 44) are more potent by approximately 5-10-fold than their corresponding (S)-(-)-enantiomers with respect to their affinity for the PCP site, their ability to prevent accumulation of [45Ca2+] in cultured neuronal cells, and their protection against the lethal effects of NMDA in mice. In general, there was no separation between the dose that prevented NMDA lethality and the dose that produced ataxia in mice, except in the case of the thiaphenanthrenamines 41 and 43. We have not yet obtained evidence that this small separation in activity offers a therapeutic advantage in the treatment of cerebral ischemia or other neurodegenerative disorders.


Subject(s)
Phenanthrenes/chemical synthesis , Phencyclidine/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Ataxia/chemically induced , Binding Sites , Binding, Competitive , Brain/drug effects , Brain/metabolism , Mice , Models, Molecular , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Rats , Rats, Wistar , Stereoisomerism , Structure-Activity Relationship
3.
J Med Chem ; 36(6): 654-70, 1993 Mar 19.
Article in English | MEDLINE | ID: mdl-8459395

ABSTRACT

The noncompetitive (PCP) site of the N-methyl-D-aspartate (NMDA) receptor complex has been implicated in a number of pathologies, including the etiology of ischemic stroke. Recent testing has shown that cis-1,2,3,4,9,9a-hexahydro-N-methyl-4aH-fluoren-4a-amine (1), a rigid analog of PCP, is a potent antagonist at this site (IC50 = 30 nM for displacement of [3H]TCP). On the basis of this finding, a number of derivatives encompassing variations in stereochemistry, amine substitution and position, aromatic and aliphatic ring substitution, and heteroatom ring substitution have been prepared to explore the structure-activity relationships around this ring system. All compounds were evaluated for their PCP receptor affinity; potent compounds were also tested in vitro (cultured neurons) and in vivo (prevention of NMDA-induced lethality in mice). The present hexahydrofluorenamines demonstrated a wide range of potencies, with optimal affinity concentrated in analogs containing a heteroatom (sulfur) in the B ring (IC50 of 11 nM versus [3H]TCP for 16b), methyl substitution on the amine, and R stereochemistry at the 4a position. No significant improvement in affinity was seen with aromatic ring substitution. Aliphatic ring substitution, large amine substituents, and alterations in the position of amine substitution on the ring system resulted in a loss of potency. To explore the effect of simultaneous hydrogen bonding with a putative receptor atom from two directions, the 2-hydroxymethyl derivatives were prepared. This substitution resulted in a loss in receptor binding affinity. Molecular modeling, X-ray, and NMR studies have been used to determine an optimal conformation of the hexahydrofluoreneamines at the receptor site.


Subject(s)
Fluorenes/chemical synthesis , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Binding Sites , Fluorenes/chemistry , Fluorenes/pharmacology , Magnetic Resonance Spectroscopy , Male , Mice , Models, Molecular , Phencyclidine/metabolism , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/prevention & control , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...